首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The larvae of many marine invertebrate species are able to delay their settlement and metamorphosis in the absence of characteristic cues from the adult habitat. This phenomenon was experimentally studied in the megalopa stage of Sesarma curacaoense de Man, 1892, a semiterrestrial grapsid crab that lives in the shallow coastal mangrove habitats in the Caribbean region. Duration of the development and survival to metamorphosis to the first juvenile crab stage were compared between experimental treatments, where the water was conditioned with adult crabs (“adult-conditioned water,” ACW) and control groups reared in filtered seawater. In the experiments with larvae from two different females, development duration was significantly shorter and mortality lower in water conditioned with conspecific adults. In the two control groups, the effects of supply with an artificial substrate (nylon gauze) were tested. This comparison showed that the presence of substrate did not significantly influence the time to metamorphosis, but did reduce the mortality rate. In all later experiments, the megalopae were thus routinely provided with nylon gauze as a substrate. In each of the three subsequent replicate experiments conducted with larvae from different females, survival rate and development time to metamorphosis were compared between one control group and four treatments with ACW. The effectiveness of conspecific (S. curacaoense) adult odors as metamorphosis-stimulating cue was, in these experiments, compared with that of ACW from one congener (S. rectum) and two species belonging to different genera within the Grapsidae (Armases miersii, Chasmagnathus granulata). While the rate of survival showed inconsistent patterns among repeated experiments, the development was consistently fastest with conspecific ACW, followed by ACW from S. rectum, A. miersii and C. granulata. Only the conspecific and congeneric cues had statistically significant effects (i.e. shorter development than in the controls). These response patterns suggest that chemically similar factors (presumably pheromones) are produced by closely related species and, thus, their chemical structure may reflect phylogenetical relationships within a clade.  相似文献   

2.
Do patchy distribution patterns of infaunal polychaetes result from active site selection of larvae influenced by sediment-associated microbial cues? This hypothesis was tested with still-water laboratory settlement assays revealing the acceptance or rejection of polychaete larvae to qualitatively different sediments. Laboratory brood cultures of the spionid polychaetes Polydora cornuta and Streblospio benedicti yielded a sufficient number of larvae with planktotrophic development for bioassays. High settlement rates (75-95%) of test larvae were observed in response to natural sediment. Sterilization of natural sediment significantly decreased settlement of P. cornuta (25-55%) while combustion of sediment significantly decreased the settlement rate in both species (5-50%). Differences in settlement responses to sediments treated by sterilization or combustion most likely resulted from a variety of factors such as modified sediment fabric, grain size distribution and quantity of adsorbed organic matter. To experimentally address the potential role of microorganisms and microbial metabolites as mediators of larval settlement, ashed sediment was inoculated with viable microorganisms obtained from natural sediment. In both polychaete species, this treatment significantly increased larval settlement in comparison to the control of ashed sediment indicating that larval settlement was at least partially mediated by the presence of microorganisms associated with sediment.  相似文献   

3.
Recruitment of crabs to nursery habitat requires settlement of the megalopal stage on suitable substratum followed by metamorphosis into the first juvenile stage. Reducing the time to metamorphosis may result in higher recruitment and survival. Previous work has shown that metamorphosis of the Asian shore crab is accelerated by cues from three different sources: (a) water-soluble exudate produced by conspecific adult crabs; (b) biofilm covering rocks in natural habitat for this species; and (c) abiotic rock from natural habitat. The objective of the present investigation was to characterize the metamorphic cue associated with biofilm from rocky intertidal habitat and to compare the three metamorphic cues (exudate from conspecific adults, biofilm from rocky intertidal, and texture of substratum) that have been identified for H. sanguineus. Results of our study show that megalopae of the Asian shore crab respond strongly to biofilm associated with rocky intertidal habitat that has developed for at least 8 days. We also found that megalopae respond to textured rock surfaces from natural habitat, even when those surfaces had been rendered abiotic. The cue remains active after the biofilm has been exposed to − 20 ºC for 12 h, but is de-activated by a few minutes exposure to 100 °C. Moreover, the biofilm cue appears to work in synergy with cues from other sources, but requires actual contact with the biofilm. Our findings show that addition of biofilm to an abiotic textured rock surface significantly decreases mean time to metamorphosis, and simultaneous exposure of megalopae to biofilm-covered rock and to exudate from adult H. sanguineus decreases mean time to metamorphosis even further. The response of this species to multiple cues—and particularly to biofilm in the absence of adult conspecifics—provides a clear advantage in the colonization of virgin habitat and helps explain the very rapid spread of this invasive species along the majority of the east coast of the United States in only two decades.  相似文献   

4.
Insects use chemosensory cues to feed and mate. In Drosophila, the effect of pheromones has been extensively investigated in adults, but rarely in larvae. The colonization of natural food sources by Drosophila buzzatii and Drosophila simulans species may depend on species-specific chemical cues left in the food by larvae and adults. We identified such chemicals in both species and measured their influence on larval food preference and puparation behaviour. We also tested compounds that varied between these species: (i) two larval volatile compounds: hydroxy-3-butanone-2 and phenol (predominant in D. simulans and D. buzzatii, respectively), and (ii) adult cuticular hydrocarbons (CHs). Drosophila buzzatii larvae were rapidly attracted to non-CH adult conspecific cues, whereas D. simulans larvae were strongly repulsed by CHs of the two species and also by phenol. Larval cues from both species generally reduced larval attraction and pupariation on food, which was generally—but not always—low, and rarely reflected larval response. As these larval and adult pheromones specifically influence larval food search and the choice of a pupariation site, they may greatly affect the dispersion and survival of Drosophila species in nature.  相似文献   

5.
Biofilms of marine bacteria and diatoms and their combinations were examined in laboratory choice assays to determine their effects on the attachment and successful metamorphosis of the larvae of the bryozoan Bugula neritina (Linnéus). The larval settlement in response to unfilmed surfaces, a natural biofilm (NBF) and adsorbed cells of three strains of bacteria, five strains of pennate diatoms and combinations of the two at different densities. Bacterial and diatom strains showed different effects on the larval settlement of B. neritina. Bacterial monospecific strains of an unidentified α-Proteobacterium and Vibrio sp. mediated the same percentage of settlement as a filtered seawater control. Biofilms of Pseudoalteromonas sp. caused significantly lower larval settlement. Larval settlement of B. neritina was negatively correlated with increasing densities of Pseudoalteromonas sp. The highest percentages of settlement were mediated by the biofilms of the diatom species Achnanthes sp., Amphora cofeaeformis, Amphora tenerrima, Nitzschia constricta and a 5-day-old natural biofilm, while the lowest settlement was found on a N. frustulum film. A three-way analysis of variance demonstrated that the density of bacteria and the presence of particular species of diatoms and bacteria in combined biofilms, significantly affected the settlement of B. neritina larvae. High settlement of larvae (50-90%) at all treatments indicated that B. neritina larvae are much more indiscriminate settlers than previously expected. Hence, using this species as a monitoring organism to trace ecologically relevant subtle changes of settlement cues in the natural environment should be carefully re-examined.  相似文献   

6.
The settlement of marine larvae is influenced by a wide range of physical and biological factors. It is still poorly known how the nature of substrate and the biofilm can interact in regulating settlement patterns of invertebrate larvae. Here we use laboratory experiments focused on settlement behaviour of the barnacle Balanus amphitrite. The aim of this work is to understand whether: (i) the nature of substratum can affect biofilm formation and its structure, (ii) the nature of substratum can affect B. amphitrite larval settlement, (iii) the age of the biofilms and the nature of substrate can interact in influencing larval settlement.Four kinds of substrata (marble, quartz, glass, and cembonit) were biofilmed under laboratory conditions for 5, 10 and 20 days at the temperature of 28 °C. Settlement response was investigated with 5-day-old cyprids. Biofilms were quantitatively and qualitatively analysed by scanning electron microscopy. The settlement of B. amphitrite larvae significantly differed among substrata; also, the patterns of development of biofilm assemblages changed with substrate. In addition, the larval attractiveness of different substrates tends to disappear with biofilm age.  相似文献   

7.
Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species.  相似文献   

8.
The nature of resistance in Cucumis ficifolius and C. metuliferus to the root-knot nematode, Meloidogyne incognita acrita, was studied under greenhouse conditions. Although as many larvae penetrated the roots of these species as those of the susceptible C. melo, few developed to the adult female stage. Resistance in C. ficifolius and C. metuliferus was associated with hindrance of larval development beyond the second stage, delayed development of larvae to adults and stimulation toward maleness. Tissue necrosis or hypersensitivity was not associated with larval penetration. Comparisons of the histopathology of 26-day-old infections of C. melo and C. metuliferus roots showed no observable differences in the type of giant cell development in regions of roots associated with adult females. However, in C. rnetuliferus immature nematodes were associated with small giant cells which were limited to a few cells near the head of the nematode.  相似文献   

9.
1. Prey organisms can perceive cues to predation hazard and adopt low‐risk behaviours to increase survival. Animals with complex life cycles, such as insects, can exhibit such anti‐predatory behaviours in multiple life stages. 2. Cues to predation risk may induce ovipositing females to choose habitats with low predation risk. Cues to predation risk may also induce larvae to adopt facultative behaviours that reduce risk of predation. 3. One hypothesis postulates that anti‐predation behaviours across adult and larval stages may be negatively associated because selection for effective anti‐predator behaviour in one stage leads to reduced selection for avoidance of predators in other stages. An alternative hypothesis suggests that selection by predation favours multi‐component defences, with both avoidance of oviposition and facultative adoption of low‐risk behaviours by larvae. 4. Laboratory and field experiments were used to determine whether defensive responses of adult and larval mosquitoes are positively or negatively associated. The study tested effects of waterborne cues from predatory Toxorhynchites theobaldi on oviposition choices and larval behaviours of three of its common prey: Culex mollis, Limatus durhamii and Aedes albopictus. 5. Culex mollis shows strong anti‐predator responses in both life stages, consistent with the hypothesis of a multi‐component behavioural defence. The other two species showed no detectable responses to waterborne predator cues in either adult or larval stages. Larvae of these unresponsive species were significantly more vulnerable to this predator than was C. mollis. 6. For these mosquitoes, species appear either to have been selected for multi‐component defences against predation or to act in ways that could be called predator‐naïve.  相似文献   

10.
The impacts of different concentrations of the excretory-secretory products (ESPs) of the solitary ascidian Styela rustica (Linnaeus, 1767) and the sponge Halichondria panacea (Pallas, 1766) on the settlement, metamorphosis, and mortality rates of H. panacea larvae were studied in a laboratory experiment. At high concentrations, substances released into the environment by the ascidian S. rustica exerted a negative impact on the metamorphosis rate of sponge larvae. The exposure to moderate or high concentrations of ESPs from conspecific adults led to high mortality of larval sponges; however, low conspecific ESP concentrations markedly stimulated metamorphosis; larval mortality was low. Apparently, different concentrations of the same ESPs can have effects with a different strength and focus. This should be taken into account in the study of chemically mediated interactions between aquatic organisms.  相似文献   

11.
Gregariousness in marine invertebrate larvae is an important regulator of benthic community structure. Previous laboratory settlement assays employing Balanus amphitrite Darwin cyprids found gregarious effects with as few as 3 larvae well(-1), together with modulation of such effects by chemical cues. Here, the relationship between settlement rate and larval density was rigorously tested through a fully randomised design. Seawater conditioned with adult B.amphitrite was tested alongside unconditioned seawater to determine the effect of a conspecific cue on gregarious interactions. Gregarious effects were detected in both conditioned and unconditioned seawater at < or =4 larvae well(-1). In untreated seawater, settlement rate increased linearly with larval density, levelling off at densities of > or =10 larvae well(-1). In conditioned seawater, settlement induction was observed at < or =4 larvae well(-1), switching to inhibition at 6, 8 and 10 larvae well(-1), before asymptoting at the highest densities tested. These results advocate the use of individual larvae in laboratory assays that investigate factors stimulating barnacle settlement.  相似文献   

12.
Population connectivity for most marine species is dictated by dispersal during the pelagic larval stage. Although reef fish larvae are known to display behavioral adaptations that influence settlement site selection, little is known about the development of behavioral preferences throughout the larval phase. Whether larvae are attracted to the same sensory cues throughout their larval phase, or exhibit distinct ontogenetic shifts in sensory preference is unknown. Here, we demonstrate an ontogenetic shift in olfactory cue preferences for two species of anemonefish, a process that could aid in understanding both patterns of dispersal and settlement. Aquarium-bred na?ve Amphiprion percula and A. melanopus larvae were tested for olfactory preference of relevant reef-associated chemical cues throughout the 11-day pelagic larval stage. Age posthatching had a significant effect on the preference for olfactory cues from host anemones and live corals for both species. Preferences of olfactory cues from tropical plants of A. percula, increased by approximately ninefold between hatching and settlement, with A. percula larvae showing a fivefold increase in preference for the olfactory cue produced by the grass species. Larval age had no effect on the olfactory preference for untreated seawater over the swamp-based tree Melaleuca nervosa, which was always avoided compared with blank seawater. These results indicate that reef fish larvae are capable of utilizing olfactory cues early in the larval stage and may be predisposed to disperse away from reefs, with innate olfactory preferences drawing newly hatched larvae into the pelagic environment. Toward the end of the larval phase, larvae become attracted to the olfactory cues of appropriate habitats, which may assist them in identification of and navigation toward suitable settlement sites.  相似文献   

13.
The American horseshoe crab, Limulus polyphemus (Linnaeus), typically inhabits estuaries and coastal areas with pronounced semi-diurnal and diurnal tides that are used to synchronize the timing of spawning, larval hatching, and emergence. Horseshoe crabs spawn in the intertidal zone of sandy beaches and larval emergence occurs when the larvae exit the sediments and enter the plankton. However, L. polyphemus populations also occur in areas that lack significant tidal changes and associated synchronization cues. Endogenous activity rhythms that match predictable environmental cycles may enable larval horseshoe crabs to time swimming activity to prevent stranding on the beach. To determine if L. polyphemus larvae possess a circatidal rhythm in vertical swimming, larvae collected from beach nests and the plankton were placed under constant conditions and their activity monitored for 72 h. Time-series analyses of the activity records revealed a circatidal rhythm with a free-running period of ≈ 12.5 h. Maximum swimming activity consistently occurred during the time of expected falling tides, which may serve to reduce the chance of larvae being stranded on the beach and aid in seaward transport by ebb currents (i.e., ebb-tide transport). To determine if agitation serves as the entrainment cue, larvae were shaken on a 12.4 h cycle to simulate conditions during high tide in areas with semi-diurnal tides. When placed under constant conditions, larval swimming increased near the expected times of agitation. Thus, endogenous rhythms of swimming activity of L. polyphemus larvae in both tidal and nontidal systems may help synchronize swimming activity with periods of high water and inundation.  相似文献   

14.
The effects of the excretory-secretory products (ESPs) of several fouling organisms on the larvae of the sponge Halichondria panicea were assessed in laboratory experiments. The ESPs of the brown alga Laminaria saccharina significantly stimulated larval settlement and metamorphosis, while the metabolites excreted by conspecific adult colonies were harmful to H. panicea larvae. The ESPs of the ascidians Styela rustica and Molgula citrina and the blue mussel Mytilus edulis impeded both the settlement and metamorphosis of the sponge larvae to varying degrees. The chemical cues of the bivalve Hiatella arctica had no significant effect on the number of settled larvae of H. panicea but retarded their metamorphosis.  相似文献   

15.
The ability of marine invertebrate larvae to delay their metamorphosis in the absence of adequate environmental cues has been reported for numerous sedentary and sessile species. In the present study, the effect of various substrata and the presence of conspecific adults on the metamorphosis of a mobile species, the crab Chasmagnathus granulata, was evaluated. The duration of the megalopa stage in experiments with six different substrata and in the presence or absence of conspecific adults was compared in a laboratory study. In addition, the influence of natural substrata was compared with that of artificial substrata of similar grain size or texture. In a further experiment, the two most effective cues (natural mud and conspecific adults) were tested as single vs. combined factors. Natural mud and unidentified chemical cues from conspecific adults had the strongest accelerating effects on development duration to metamorphosis. With the exception of nylon threads (artificial filamentous substratum), none of the artificial substrata had a significant effect on the duration of the megalopa stage. Simultaneous exposure to natural mud and water containing chemical cues from conspecific adults accelerated metamorphosis more than each of these factors separately. Megalopae that were reared without a substratum (control) delayed their metamorphosis by 29% (about 3 days) compared with those in simultaneous contact with natural mud and rearing water of adult conspecifics. The results indicate that the metamorphosis of the megalopa of C. granulata is influenced by the presence or absence of environmental stimuli that are associated with the preferred adult habitat.  相似文献   

16.
The Florida stone crab, Menippe mercenaria, is an economically and ecologically important species that ranges from North Carolina throughout the Caribbean and the southeastern Gulf of Mexico. However, there is little known about its early life history stages as compared to other commercially important species in the region. The goal of this research was to examine effects of putative cues on metamorphosis from the megalopa stage to the first juvenile stage. Our study investigated the effect of water-soluble exudates from four substrata, as well as natural biofilms, and exudates from adult stone crabs. In addition, the influence of natural substrata was compared to that of artificial substrata. Adult exudate had no significant effect on metamorphosis, despite a wide range of tested concentrations. In contrast, there was a significant effect on mean time to metamorphosis in experimental groups exposed to multiple cues associated with the brown alga Sargassum fluitans, rubble from stone crab habitat, the eastern oyster Crassostrea virginica, and biofilms associated with the oyster. Furthermore, we provide evidence for metamorphic responses to water-soluble chemical cues, as well as biochemical and physical cues associated with different substrata. Overall results were coherent with the relevant body of previous work on metamorphosis of brachyuran crab larvae and indicate that both physical and chemical cues are important factors in facilitating the settlement and metamorphosis of M. mercenaria larvae in juvenile nursery habitat.  相似文献   

17.
Adult-associated chemical cues can stimulate settlement and metamorphosis of invertebrate larvae into habitats with an enhanced likelihood of juvenile and adult survival. For example, sediments from adult fiddler crab habitat stimulate fiddler crab megalopae to metamorphose (molt) sooner than sediments without adult cues. A similar stimulation of molting occurs after exposure to waterborne chemical cues from adult habitats and to exudates and extracts of adult crabs. We tested whether sediments from habitats without adult Uca pugnax (Smith), which do not stimulate molting of their megalopae, could become stimulatory through brief exposure to adult crabs. Sediments were collected from tidal flats at several distances (∼ 1 m, ∼ 50 m, and ∼ 5.4 km) from adult habitats, and incubated for 24 h with or without adult crabs. Molting rates of laboratory-reared megalopae exposed for 48 h to adult-conditioned sediments were compared to those for untreated controls. Sediments collected in or within 1 m of adult habitat elicited the highest molting rates, and natural sediments from 50 m and 5.4 km had little or no effect on molting. However, incubating sediments collected away from adult habitat with adult crabs produced a higher molting response, and the magnitude of the enhancement increased with distance from adult habitat. Results suggest that the chemical cues that adult crabs release are retained by sediments and consequently stimulate molting of megalopae, regardless of the nature of the sediments themselves. Lack of chemical cues may retard colonization of newly created or heavily disturbed habitats that are otherwise suitable settlement and adult habitat.  相似文献   

18.
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.  相似文献   

19.
The acorn barnacle Balanus amphitrite (syn. Amphibalanus amphitrite) is a model organism to investigate pelago-benthic transitions in marine invertebrates. A driver for larval settlement in this organism is the need to attach close to conspecifics, to allow reproduction to take place. Adult barnacles are covered by microbial biofilms and the contribution of these biofilms to conspecific recognition is not fully understood. Little information is available on microbial communities associated with B. amphitrite. We compared biofilm communities from the barnacle shell surface with those from the surrounding rocks using the culture-independent methods of quantitative PCR and denaturing gradient gel electrophoresis. Quantification of the relative abundances of higher bacterial taxa showed that barnacles hosted a greater proportion of α-Proteobacteria compared to rock-associated biofilms (p < 0.01). Differences in relative abundances of other taxa were not observed but DGGE profiling suggested that differences were present at lower taxonomic levels. The capacity of these communities to influence larval settlement was assessed by growing multispecies biofilms on artificial medium, obtained by extracting nutrients from adult barnacles. Biofilms composed of shell-associated bacteria were capable of promoting conspecific settlement by 67% compared to control surfaces (p < 0.05), while rock-associated communities showed contrasting effects. A taxonomic comparison of settlement-stimulating and -inhibiting bacteria was performed by DGGE and band sequencing. All partial 16S rRNA genes sequenced were similar to members of the Vibrio and Pseudoalteromonas genera, suggesting that larvae can detect and respond to variations in the composition of microbial biofilms at low taxonomic levels. Our results indicate that barnacle larvae may be able to detect parentally-associated biofilms and use this information to settle close to members of its own species.  相似文献   

20.
Most models on settlement of open marine invertebrate populations are based on space-limitation. These models, however, do not recognise that free space may not drive the demography of populations when larval numbers are small or when larval supply varies along a gradient in the habitat. They also do not incorporate the effects of larval choice when settling. It has been hypothesised that, in gregarious barnacles, the effects of adult conspecifics, rather than available free space, may play a primary role in settlement. That is, cues from adults along perimeters of patches, rather than space available, may enhance colonisation. This study therefore aimed to distinguish between these separate influences on populations of Chamaesipho tasmanica, a gregarious barnacle characterised by relatively few larvae arriving to settle each year. Patches of 6, 3 and 1.5 cm diameter were cleared within aggregations of barnacles at three heights (Low, Mid, Upper) of Chamaesipho's distribution at two sites and during 2 years of settlement. Total numbers of settlers in each year were manipulated to determine the separate influences on settlement due to availability of substratum or the effects of conspecific adults. To test for the effects of available free space, numbers of settlers per unit area were analysed. To test for gregarious effects due to the presence of adults, numbers of settlers per unit perimeter were analysed. While available substratum was found not to affect settlement of this barnacle, gregarious settlement in response to adults at perimeters of patches was thought to be confounded by differential larval supply and differential conspecific cues among heights on the shore. Results from this study therefore have important implications for survival of gregarious populations following disturbances, especially in species where larval supply is poor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号