首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to measure the acute toxicity of zinc (Zn) on Farfantepenaeus paulensis at different salinities and temperatures by monitoring oxygen consumption. This aspect of the effect of zinc has not been studied in this important commercial species before. First, we examined the acute toxicity of zinc in F. paulensis at 24, 48, 72, and 96?h medium lethal concentration (LC50). One hundred and fifty shrimp were employed for the routine metabolism measurement utilizing sealed respirometers. Ten shrimp were subjected to oxygen consumption measurements in one of the four concentrations of zinc (control, 0.5, 1.0, 2.0, and 3.0 mg?L?1) at three salinities (36, 20, and 5) and three temperatures (25°C, 20°C, and 15°C). Zinc was significantly more toxic at a salinity of 5 than at 20 or 36. The oxygen consumption was estimated through experiments performed on each of the 12 possible combinations of three temperatures (25°C, 20°C, and 15°C) and three salinities (36, 20, and 5). The shrimp showed a significant reduction in oxygen consumption at a salinity of 5. The results show that the oxygen consumption decreases with respect to the zinc concentration in all temperatures studied. At the highest zinc concentration employed (3.0?mg?L?1), the salinity 5 and the temperature at 25°C, oxygen consumption decreases 60.92% in relation to the control. The results show that zinc is more toxic to F. paulensis at lower salinities. The significance of the findings for the biology of the species close to sources of zinc is discussed.  相似文献   

2.
The standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi to changes in temperature (15-30 °C), salinity (0-45‰) and a combination thereof was investigated. The rate of oxygen consumption of the shrimp was determined using a YSI oxygen meter. At a constant salinity of 35‰ the respiration rate of P. peringueyi increased with an increase in temperature and ranged between 0.260 and 0.982 μl O2 mg wwt− 1 h− 1. The Q10 value over the temperature range 15-25 °C was estimated at 3.13. At a constant temperature of 15 °C the respiration rate of P. peringueyi also increased with an increase in salinity and ranged between 0.231 and 0.860 μl O2 mg wwt− 1 h− 1. For combination experiments the absence of any significant difference in the respiration rate of P. peringueyi at the four temperatures over the salinity range 15-35‰ suggests that the shrimp is well adapted to inhabiting environments characterised by variations in salinity and temperature such as those encountered within the middle and lower reaches of permanently open estuaries with substantial freshwater inflow. On the other hand, the total mortality of the shrimp recorded at salinities < 5‰ at all four temperatures suggests that the upper distribution of the shrimp may reflect physiological constraints. Similarly, the increase in the respiration rate of the shrimp at the four temperatures at salinities > 35‰ suggests that the shrimp may experience osmotic stress in freshwater deprived permanently open and intermittently open estuaries where hypersaline conditions may develop.  相似文献   

3.
The present study examined the effect of salinity and temperature on the rate of oxygen consumption and total body osmolality of the triclad turbellarian Procerodes littoralis, a common marine flatworm normally found in areas where freshwater streams run out over intertidal areas. Extremes in environmental factors encountered by P. littoralis were recorded at the study site. These were salinity (0-44 psu), temperature (2.7-24.9 °C) and oxygen concentration (2.8-16.1 mg l−1). Respirometry experiments showed minimal oxygen consumption rates at the salinity extremes encountered by the study species (0 and 40 psu). Further experiments showed relatively constant oxygen consumption rates over the temperature range 5-20 °C and elevated consumption rates at temperatures above 25 °C. Total body osmolality of P. littoralis increased with increasing salinity. The study illustrates how a marine flatworm uses integrated physiological and behavioural mechanisms to successfully inhabit an environment that is predominantly freshwater for up to 75% of the tidal cycle.  相似文献   

4.
Juvenile gray snapper (Lutjanus griseus) occupy a wide range of estuarine and nearshore habitats that differ in physico-chemical properties. To quantify the energetic cost of inhabiting these different habitats, routine metabolism of individual gray snapper was measured in the laboratory at 20 combinations of temperature (18, 23, 28, and 33 °C) and salinity (5, 15, 25, 35, and 45 psu). An open, flow-through respirometer was used, enabling trials to be run for long periods (∼16 h), while maintaining water quality (dissolved O2>70% saturation), and providing fish sufficient time to habituate to the chambers undisturbed. Video recordings of fish in the respirometer chambers were analyzed to quantify the spontaneous activity rate of individuals. Analysis of covariance, using fish weight and mean activity rate as covariates, indicated significant temperature and salinity effects on oxygen consumption. Oxygen consumption was significantly higher at high salinities, and the salinity effect was temperature dependent. A polynomial equation describing oxygen consumption as a function of temperature and salinity indicated the increase due to salinity from 5 to 45 psu at high temperatures (30-33 °C) was equivalent to a 3 °C increase in temperature. At intermediate temperatures (24-26 °C), the increase due to salinity from 5 to 45 psu was less dramatic, equivalent to a 2 °C increase in temperature. At the lowest temperatures (18 °C), salinity did not have a significant effect on oxygen consumption. The increased metabolic costs in high salinities (∼7% at the high temperature) represent a significant energy cost for juveniles, that would need to be balanced by lower predation risk or greater food availability to result in similar juvenile production compared to lower salinity environments.  相似文献   

5.
Hypoxia elicits a number of compensatory responses in animals, including behavioral hypothermia. The hypothesis that hypoglycemia induces hypothermia in the bullfrog Rana catesbeiana was tested and that this behavioral response would be beneficial. Frogs equipped with a temperature probe were tested in a thermal gradient (10–40°C). Insulin (15 IU kg−1) caused significant reduction of body temperature, from 25.0 to 17.8°C. A non-metabolizable glucose analogue, 2-deoxy-d-glucose (2-DG, 50 mg kg−1),which blocks intracellular glucose utilization, was also injected and caused a similar drop in body temperature, despite an increase in plasma glucose levels. To assess the possible benefits of hypoglycemia-induced hypothermia, the effects of insulin and 2-DG injections were measured on plasma glucose concentration and on oxygen consumption of frogs equilibrated at 10, 20 and 30°C. The plasma glucose was elevated at higher temperatures and so was oxygen consumption. The insulin caused a significant reduction of plasma glucose concentration (about 1.22 μMol ml−1) whereas 2-DG caused a significant increase (about 0.70 μMol ml−1) at 30°C. Both drugs caused a reduction of oxygen consumption (approximately 0.388 and 0.382 ml min−1 kg at 30°C after insulin and 2-DG injection, respectively). No effect of either insulin or 2-DG was observed when the animals were equilibrated at 10°C. In conclusion, hypothermia may be a beneficial response to hypoglycemia in frogs.  相似文献   

6.
Behavioral and physiological responses to acute changes in dissolved oxygen were examined in the bonnethead shark, Sphyrna tiburo. In two sets of respirometry experiments, sharks were randomly exposed to seawater in oxygen contents of 6.0, 5.0, 4.0 and 3.0 mg l−1. During exposure, bonnetheads increased mouth gape from 0.8 cm at 6.0 mg l−1 to 2.2 cm at 3.0 mg l−1, while ventilation volume increased from 0.61 to 5.28 l min−1 kg−1. Standard oxygen consumption remained unchanged (163-181 mg O2 kg−1 h−1) throughout all treatments and was not significantly different. Utilization (%) declined from 52.3% at 6.0 mg l−1 to 21.3% when oxygen levels reached 3.0 mg l−1. Changes in oxygen content of ambient water also caused no significant change in either blood oxygen content or hematocrit. Using cellulose acetate electrophoresis, a single hemoglobin profile was identified at seawater of 6.0 mg l−1 and hypoxic conditions. Results suggest bonnetheads are physiologically able to tolerate moderate levels of hypoxia.  相似文献   

7.
The resting metabolic rate (RMR) of seasonally-acclimated Mabuya brevicollis of various body masses was determined at 20, 25, 30, 35 and 40 °C, using open-flow respirometry. RMR (ml g−1 h−1) decreased with increasing mass at each temperature. RMRs increaProd. Type: FTPsed as temperature increased. The highest and lowest Q10 values were obtained for the temperature ranges 20–25 °C and 30–35 °C for the summer-acclimated lizards. The exponent of mass “b” in the metabolism-body mass relation ranged from 0.41 to 0.61. b values were lower in the autumn and winter-acclimated lizards than in spring and summer-acclimated lizards. Seasonal acclimation effects were evident at all temperatures (20–40 °C) for M. brevicollis. Winter-acclimated skinks had the lowest metabolic rates at different temperatures. The pattern of acclimation exhibited by M. brevicollis may represent a useful adaptation for lizards inhabiting subtropical deserts to promote activity during their active seasons.  相似文献   

8.
As eutrophication of coastal waters increases, water quality issues such as hypoxia have come to the forefront of environmental concerns for many estuarine systems. Chronic hypoxia during the summer has become a common occurrence in numerous estuaries, degrading nursery habitat and increasing the potential for exposure of juvenile fish to low levels of dissolved oxygen (DO).We conducted a laboratory study to investigate how hypoxic conditions and temperature affect growth rates of two juvenile estuary-dependent fish: the Atlantic menhaden (Brevoortia tyrannus) and spot (Leiostomus xanthurus). For a 2-week period, we exposed the fish to one of four constant DO levels (6.0, 4.0, 2.0 or 1.5 mg O2 l−1), at one of two temperatures (25 or 30 °C). A fifth DO treatment, included for spot at 30 °C, allowed DO to fluctuate from 10.0 mg O2 l−1 during the day, to 2.0 mg O2 l−1 at night. This diel fluctuation approximated the natural DO cycle in tidal estuarine creeks. Size measurements were recorded at the beginning, middle and end of experiments.Growth rates were generally unaffected by low DO until concentrations dropped to 1.5 mg O2 l−1, resulting in 31-89% growth reductions. Our results suggest that DO levels must be severely depressed, and in fact, approaching lethal limits, to negatively impact growth of juvenile spot and Atlantic menhaden.  相似文献   

9.
Summary Body temperature, heterothermy, oxygen consumption, heart rate, and evaporative water loss were studied in four species of flying foxes (Megachiroptera), Dobsonia minor, Nyctimene major, Nyctimene albiventer, and Paranyctimene raptor, from the vicinity of Madang on the north coast of New Guinea.The thermoregulatory response of D. minor resembled that of most other placental mammals weighing 80 to 100 g. Body temperatures were relatively stable at ambient temperatures between 5 and 34°. The mean oxygen consumption at rest between 30 and 35° was 1.26 cc O2 (g·hr)–1. At ambient temperatures between 5 and 35° evaporative water loss averaged 4.5 mg (g·hr)–1 and increased sharply at higher temperatures. When subjected to heat stress the animals panted, salivated, and licked the wings, belly, and uropatagium. At temperatures above 38° the ratio of heat lost through evaporation to heat production exceeded 1. Minimal heart rates in resting animals near thermal neutrality were approximately 275/min.In those parameters measured, N. major which weighed about 80 g resembled D. minor. Nyctimene albiventer and P. raptor weigh less than 30 g and are among the smallest of the flying foxes. Each shows both homeothermic and heterothermic patterns of response. At an ambient temperature of 35° the minimal oxygen consumption of homeothermic N. albiventer and P. raptor were 1.43 and 1.38 cc O2 (g·hr)–1, respectively. Oxygen consumption of homeothermic N. albiventer at 25°, 2.59 cc O2 (g.hr)–1, was almost quadruple that of torpid animals at the same temperature. During the daytime both N. albiventer and P. raptor characteristically allowed their body temperatures to fall to near 25°. Both readily aroused from the hypothermic state through physiological means. Heart rates of homeothermic N. albiventer resting at 35° ranged from 312 to 326/min while those of animals torpid at 25° were 88 to 96/min.The capacity for heterothermy has not previously been demonstrated in any members of the Megachiroptera, but our data indicate that it can occur on a daily basis in N. albiventer and P. raptor. This capacity appears to be related to size since it occurs in none of the larger flying foxes so far studied.The data presently available indicate that the relation of body weight to standard metabolism in the Megachiroptera is similar to that of the other placental mammals. In the species we studied, thermal conductances were higher, and heart rates, lower than predicted for mammals of their sizes.These studies were carried out during the 1969 Alpha Helix Expedition to New Guinea and were supported in part by grants GB-5139, GB-3656, and GB-8445 from the U. S. National Science Foundation.  相似文献   

10.
Influence of salinity and temperature on the germination of Kochia scoparia   总被引:1,自引:0,他引:1  
Kochia scoparia is one of the most common annual halophytes foundin the Great Basin. Seeds were collected from a population growing in asalt playa at Faust, Utah and were germinated at 5 temperature regimes(12 h night/12 h day, 5–15 °C, 10–20 °C, 15–25 °C,20–30 °C and 25–35 °C) and 6 salinities (0, 200, 400,600, 800 and 1000 mM NaCl) to determine optimal conditions forgermination and recovery of germination from saline conditions after beingtransferred to distilled water. Maximum germination occurred in distilledwater, and an increase in NaCl concentration progressively inhibited seedgermination. Few seeds germinated at 1000 mM NaCl. A temperatureregime of 25 °C night and 35 °C day yielded maximumgermination. Cooler temperature 5–15 °C significantly inhibited seedgermination. Rate of germination decreased with increase in salinity.Germination rate was highest at 25–35 °C and lowest at5–15 °C. Seeds were transferred from salt solutions to distilled waterafter 20 days and those from high salinities recovered quickly at warmertemperature regimes. Final recovery germination percentages in high salttreatments were high, indicating that exposure to high concentration ofNaCl did not inhibit germination permanently.  相似文献   

11.
The effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea were examined in the laboratory. The irradiance at the light compensation point (I0) was 14.40 μmol m− 2 s− 1 and the irradiance at growth saturation (Is) was 114 μmol m− 2 s− 1. We exposed A. sanguinea to 48 combinations of temperature (5-30 °C) and salinity (5-40) under saturating irradiance; it exhibited its maximum growth rate of 1.13 divisions/day at a combination of 25 °C and salinity of 20. A. sanguinea was able to grow at temperatures from 10 to 30 °C and salinities from 10 to 40. This study revealed that A. sanguinea was a eurythermal and euryhaline organism; in Japan it should have formed blooms in early summer, when salinity was relatively low. In addition, it was noteworthy that A. sanguinea had markedly cold-durability, retaining the motile form of vegetative cells for more than 50 days at 5 °C and at salinities of 25-30.  相似文献   

12.
The profundal zone of Lake Esrom, Denmark has a dense population of Chironomus anthracinus, which survives 2–4 months of oxygen depletion each summer during stratification. The metabolism of 3rd and 4th instar larvae was examined in regard to variation in biomass and temperature. Respiration at air saturation was described by a curvilinear multiple regression relating oxygen consumption to individual AFDW and temperature. At 10 °C and varying oxygen regimes the O2 consumption and CO2 production of 4th instar larvae were almost unaltered from saturation to about 3 mg O2 l–1, but decreased steeply below this level. The respiratory quotient increased from 0.82 at saturation to about 3.4 at oxygen concentrations near 0.5 mg O2 l–1. This implied a shift from aerobic to partially anaerobic metabolism. At 0.5 mg O2 l–1 the total energy production equalled 20% of the rate at saturation of which more than one third was accounted for by anaerobic degradation of glycogen. This corresponded to a daily loss of 12 µg mg AFDW–1 or approximately 5% of the body reserves. At unchanged metabolic rate the glycogen store would last three weeks, but long term oxygen deficiency causes a further suppression of the energy metabolism in C. anthracinus.  相似文献   

13.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

14.
The growth rates, production and release of the potent cytotoxin cylindrospermopsin (CYN) were studied in batch and semi-continuous cultures of Aphanizomenon ovalisporum (Cyanobacteria; Nostocaceae) strains UAM 289 and UAM 290 from Spain, over a gradient of temperatures (10–40 °C) and irradiances (15–340 μE m−2 s−1). This species grew in temperatures ranging from 15 °C to 35 °C as well as under all irradiances assayed. The growth rates ranged from 0.08 d−1 to 0.35 d−1, and the maximum growth was recorded above 30 °C and at 60 μE m−2 s−1. CYN was produced under all conditions where net growth occurred. Total CYN reached up to 6.4 μg mg−1 dry weight, 2.4 μg mm−3 biovolume, 190.6 fg cell−1 and 0.5 μg μg−1 chlorophyll a. Although CYN concentrations varied only 1.9-fold within the 15–30 °C range, a drastic 25-fold decrease was observed at 35 °C. The irradiance induced up to 4-fold variations, with maximum total CYN measured at 60 μE m−2 s−1. An elevated extracellular CYN share ranging from 20% to 35% was observed during the exponential growth phase in most experiments, with extreme temperatures (15 and 35 °C) being related to the highest release (63% and 58%, respectively) and without remarkable influence of irradiance. Growth did not have a direct influence on either CYN production or release throughout the entire range of experimental conditions. Our study demonstrates a strong and stable production and release of CYN by A. ovalisporum along field-realistic gradients of temperature and light, thus becoming a predictive tool useful for the management of water bodies potentially affected by this ecologically plastic cyanobacterium.  相似文献   

15.
Oxygen consumption rates were measured in chicks (0–7 days of age), and in non-brooding and brooding adults. Brooded chicks maintained a constant oxygen consumption rate at a chamber ambient temperature of 10–35°C (0–5 days of age: 2.95ml O2·g-1·h-1 and 6–17 days of age: 5.80 ml O2·g-1·h-1) while unbrooded chicks increased oxygen consumption rate at ambient temperature below 30°C to double the brooded oxygen consumption rate at 25 and 15°C for chicks < 5 days of age and>5 days of age, respectively. The massspecific oxygen consumption rate of breeding male and females (non-brooding) were significantly elevated within the thermoneutral zone thermal neutral zone (28–35°C) in comparison to non-breeding adults. Below the thermal neutral zone, oxygen consumption rate was not significantly different. The elevation in oxygen consumption rate of breeding quail was not correlated with the presence of broodpatches, which developed only in females, but is a seasonal adjustment in metabolism. Male and females that actively brooded one to five chicks had significantly higher oxygen consumption rate than non-brooding quail at ambient temperature below 30°C. Brooding oxygen consumption rate was constant during day and night, indicating a temporary suppression of the circadian rhythm of metabolism. Brooding oxygen consumption rate increased significantly with brood number, but neither adult body mass nor adult sex were significant factors in the relationship between brooding oxygen consumption rate and ambient temperature. The proportion of daylight hours that chicks were brooded by parents was negatively correlated with ambient temperature. After chicks were 5 days old brooding time was reduced but brooding oxygen consumption rate was unchanged. Heat from the brooding parent appeared to originate mainly from the apteria under the wings and legs rather than the broodpatch. The parental heat contribution to chick temperature regulation below the chicks' thermal neutral zone is achieved by increasing parental thermal conductance by a feedback control similar to that suggested for the control of egg temperature via the brood-patch. It is concluded that the brooding period is an energetic burden to parent quail, and the magnitude of the cost increases directly with brood number and inversely with ambient temperature during this period. The oxygen consumption rate of brooding parents was 5.80–6.90 ml O2·g-1·h-1 (ambient temperature 10–15°C) at night and up to 5.10 ml O2·g-1·h-1 (ambient temperature 18°C) during the day, which are 100 and 40% higher than non-brooding birds, respectively.Abbreviations bm body mass - SMR standard metabolic rate - T a ambient temperature - T b body temperature - I/O2 oxygen consumption rate - C wet wet thermal conductance - TNZ thermal neutral zone - ANOVA analysis of variance - ANCOVA analysis of covariance  相似文献   

16.
Far more attention has been given to the short-term lethal impacts of reduced dissolved oxygen on commercially important fish and crabs than to the long-term sublethal impacts on these same species, or on lower trophic levels. This study demonstrates that chronic, sublethal effects of hypoxia on the copepod Acartia tonsa, a critical component of many pelagic coastal food webs, can lead to significant decreases in population growth. The results of laboratory experiments conducted at 15 °C (winter) and 25 °C (summer), under conditions of normoxia (Controls), sublethal hypoxia (1.5 ml l 1) and lethal hypoxia (0.7 ml l 1) show that egg production female 1 day 1 was significantly lower at 0.7 ml l 1 compared to Controls at both temperatures, while egg production female 1 day 1 was significantly lower at 1.5 ml l 1 compared to controls in both summer experiments and in one of the two winter experiments. Survival was significantly decreased in the 0.7 ml l 1 treatment compared to Controls and the 1.5 ml l 1 treatment. Copepods developed more slowly and matured at smaller adult body sizes at both temperatures under both lethal and sublethal hypoxia compared to normoxia. Under summer temperatures, egg production was reduced by hypoxia exposure on two counts: (1) exposure to hypoxia during development resulted in smaller adults, which translated into lower egg production, and (2) egg production was still significantly lower in hypoxia treatments compared to Controls even when differences in body size were taken into account. While copepods collected in winter and exposed to winter temperatures and hypoxia also matured at smaller body sizes than copepods exposed to normoxia, egg production in winter was almost entirely attributable to this reduction in body size. These results suggest that coastal hypoxia may have a significantly greater impact in the summer months, when copepod populations are most abundant and growing at their most rapid rate of the year. With the anticipated increases in global temperatures, hypoxia may have even greater impacts on pelagic food webs.  相似文献   

17.
Summary The growth and hyoscyamine production of transformed roots of Datura stramonium have been examined in a modified 14-1 stirred tank reactor in both batch and continuous fermentations on media containing half or full strength Gamborg's B5 salts and at three different temperatures. Under a range of conditions, roots grown on half strength B5 salts with 3% w/v sucrose had a higher dry matter content (up to 8.3% w/w) and a higher hyoscyamine content (up to 0.52 mg·g–1 wet weight) than roots grown on full strength B5 salts with the same level of sucrose (up to 4.6% w/w dry matter and up to 0.33 mg hyoscyamine g–1 wet weight). Growth at 30°C was initially faster than at either 25°C or 35°C and by day 12, the drained weight of roots in the fermentor at 30°C was about fourfold greater than at 25°C and twice that at 35°C. The ultimate hyoscyamine levels attained (approximately 0.5 mg·g–1 wet weight) were similar at both 25°C and 30°C but some 40% lower at 35°C. Final packing densities of 70% w/v were achieved for roots after 37 days growth at 25°C and the highest production rate of 8.2 mg hyoscyamine l–1 per day was obtained for roots grown at 30°C. In continuous fermentation at 25°C, the release of hyoscyamine into the culture medium was low (less than 0.5% w/w of the total) but was up to sevenfold higher in fermentors operated at 30°C or 35°C. Offprint requests to: M. G. Hilton  相似文献   

18.
Oxygen consumption rates of nauplii of the brine shrimp Artemia franciscana Kellogg 1906 were determined over a range of salinities from 10 to 110 ppm, in temperatures from 0 to 30°C, using a multi-factorial design. The oxygen micro-sensors employed have a fast response time and are capable of accurately measuring oxygen concentrations at temperatures well below 0°C. Oxygen uptake rate ranged from 0.03 to 0.66 μmol O2 mg−1 h−1 and was sensitive to changes in both salinity and temperature. Temperature was the dominant factor affecting oxygen consumption rates, which showed a significant increase with increasing temperature. A slight decrease was measured in oxygen consumption with increasing salinity related to differential solubility of oxygen in waters of different salinities. Thermal sensitivity of oxygen consumption determined from calculations of Q 10, indicated physiological adaptation of Artemia nauplii to the ranges of temperatures tested. Handling editor: A. van Kerchove  相似文献   

19.
The partitioning of carbon between reserve polysaccharide and alkaloid secondary products was investigated in batch cultures of transformed roots of Datura stramonium grown in media in which the carbon substrate concentration was held constant and the level of mineral nutrients was varied. The growth and accumulation of starch and hyoscyamine was examined in roots grown at temperatures of 20°C, 25°C or 30°C in media containing 5% sucrose and levels of mineral nutrients varying from 1/4 to twice the standard level of Gamborg's B5 salts. The dry matter content was highest (up to 15% w/w) in roots grown at either 20°C or 25°C in medium of the lowest ionic strenth (1/4 B5 salts) and decreased as the ionic strength was raised (down to 7% w/w with 2 B5 salts). Up to half of this decrease could be accounted for by loss of starch from the roots. At 20°C and 25°C, the starch content of the roots grown in medium of the lowest ionic strength (1/4 B5) was 40 mg g-1 and 22 mg g-1 fresh weight respectively but decreased to less than 1 mg g-1 weight at either temperature when the ionic strength of the medium was raised to 2 B5. At 30°C, starch accumulation was severely inhibited in all media. In contrast, varying either the temperature or the ionic strength of the medium had only a small effect on hyoscyamine accumulation which remained at between 0.4–0.6 mg g-1 fresh weight. Although increases in the level of mineral salts had little effect on the hyoscyamine content of the roots, total yields however, increased due to stimulation of growth. Time course experiments showed that cultures grown at either 20°C or 25°C continued to accumulate both starch and hyoscyamine into late stationary phase.  相似文献   

20.
Munida gregaria is the most abundant galatheid crab species in the Beagle Channel (55 °S 68 °W) off Tierra del Fuego, Argentina. This species has two different and simultaneous feeding habits: predator and deposit feeder. The objectives of this work were to determine whether either of the two different feeding habits imply differences in assimilation and oxygen consumption. Subsamples of 40 and 20 crabs of each sex were randomly selected, transported to the laboratory, and used in assimilation and oxygen consumption experiments, respectively. Animals were placed in individual chambers at 8 ± 1 °C. The assimilation experiment was conducted using four types of diet: isopods (CRU), algae (ALG), pulverized fish food (PFF), and particulate organic matter (POM). The crabs' routine metabolism and postprandial oxygen consumption - or specific dynamic action SDA - were measured using Clark-type polarographic electrodes. Two kinds of food were offered: CRU and PFF to simulate both feeding habits. Assimilation in M. gregaria for both feeding habits presented values > 90% for dry mass and energetic content. Consumption rate varied between 15 and 50 mgingested gDM− 1, and was significantly higher for CRU and PFF diets. Females showed significantly higher consumption rates than males for all diets. On average, the routine metabolism of M. gregaria was 15 ± 5 μlO2 h− 1 g− 1. Deposit feeding may confer energetic advantages to female M. gregaria, especially because this diet has a low energetic cost of assimilation. Deposits of high-energy content showed the highest consumption rates among four the experimental diets. In terms of mass and energy, the deposit diet also showed the highest assimilation efficiency. The postprandial oxygen consumption was lower in females and in the deposit feeding experiment. We suggest that females may prefer the deposit feeding habit to maximize their ingested energy, allowing them to devote more energy to reproduction. This is attained by a high consumption rate and by minimizing the energy used in assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号