首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the late summer and early fall, juvenile shore crabs (Carcinus maenas L.) occurred in high abundances in mussel clumps scattered on tidal flats of the Wadden Sea. Abundances were much lower on bare tidal flats without mussel clumps and decreased substantially from July to November, whereas numbers in mussel clumps remained high. Large crabs left the tidal flats in early fall, whereas juveniles undertook tidal migrations only in the late fall. In March very few shore crabs were found in the intertidal area. The size of juvenile shore crabs living between mussels did not increase significantly during fall. On the bare tidal flats surrounding the mussels, a size increase was observed. Mussel beds and mussel clumps serve as a spatial refuge for the early benthic phases of juvenile shore crabs. Between mussels they can hide effectively from their epibenthic predators. Juvenile shore crabs do not leave the intertidal area and the mussel habitats before their major predators have left the area. Mussel clumps scattered over the tidal flats may be a critical refuge for juvenile shore crabs settling on tidal flats. Intensified efforts in mussel culturing in the European Wadden Sea during recent decades may have caused an increased abundance of mussel clumps on tidal flats, thus enhancing habitat availability for some mussel-clump inhabitants.  相似文献   

2.
The North Atlantic gastropod Littorina littorea exhibits a characteristic “intertidal” distribution: the snail is abundant in the littoral zone but scarce in the shallow subtidal and the relatively few subtidal individuals are larger (in shell size) on average than those in the intertidal zone. For highly mobile species like L. littorea, this vertical distribution is primarily determined by directional movement. Biotic and abiotic factors vary across tidal heights, and natural selection for movement to shore levels where fitness is maximized provides the ultimate (evolutionary) explanation for vertical distribution patterns. In this study, we asked whether variation in growth rate and/or predation pressure among tidal heights provide an ultimate explanation for vertical gradients in L. littorea size and abundance. We used a cage experiment to compare juvenile growth rate among tidal heights and a series of field and laboratory experiments to examine variation in predation pressure among tidal heights and snail size classes. Juvenile growth rates were highest in the low intertidal zone, declining at both higher and lower levels. Predation risk for tethered L. littorea increased with both decreasing tidal height and decreasing body size (shell height). Almost all tethered prey were consumed by shell- breaking predators and a census revealed that the two most abundant such predators were the crabs Carcinus maenas and Cancer borealis. Laboratory feeding experiments were used to compare size-dependent prey vulnerability and prey-size preferences for these two key predators. We found that L. littorea vulnerability decreased with increasing snail size and increased with increasing size of both predator species. However, whereas C. borealis were capable of consuming even the largest L. littorea, most Carcinus were unable to feed on individuals larger than 10 mm in shell height. Additionally, C. borealis preferred larger sizes of L. littorea than did Carcinus. Thus, Carcinus, which co-occurs with L. littorea in the intertidal, is a much less effective predator than C. borealis, which is found primarily in the subtidal. We conclude that predation on L. littorea by C. borealis and other subtidal consumers has resulted in the scarcity of this ecologically important grazer in the subtidal. This effect has been produced both through direct predation and by imposing strong selection for movement of L. littorea to higher tidal zones.  相似文献   

3.
During their first year in the Wadden Sea, high proportions of the tidal-flat populations of the tellinid bivalveMacoma balthica (L.) redistribute twice: immediately after their settlement in late spring, the postlarvae show a net transportation in a shoreward direction — whereas in the subsequent winter, the grown spat move in the reverse direction. As a consequence of these two periods of high mobility, distribution patterns shift twice: though initial settlement takes place mainly in the lower half of the intertidal, most spat grow to a size of ∼0.5 cm in the upper half of it, whereas most adults live in the middle and lower zones. The successive distribution patterns of spat and olderMacoma are described in detail for Balgzand, an extensive tidal-flat area in the westernmost part of the Wadden Sea. Long-term observations in this area and published evidence from other areas are used to evaluate the suitability of different tidal zones as a habitat for successive life stages ofMacoma. For spat, the upper zone is a more favourable habitat than the lower, because predation pressure (mainly from shrimp) and disturbance are less and growth is more rapid. For adults, the upper parts are no longer a favourable habitat, because the few animals that stay suffer from high parasite load, low survival, slow growth and low reproductive output. It is concluded that in their successive life stages the majority ofM. balthica live at the intertidal level most favourable to them. The strategy of timely shifts to areas more suitable to the next life stage contributes to the success of the species: it is the most widespread and common (and one of the most stable) macrozoobenthic species in the Wadden Sea.  相似文献   

4.
Pacific oysters Crassostrea gigas (Thunberg, 1793) were introduced to the northern Wadden Sea (North Sea, Germany) by aquaculture in 1986 and finally became established. Even though at first recruitment success was rare, three consecutive warm summers led to a massive increase in oyster abundances and to the overgrowth of native mussel beds (Mytilus edulis L.). These mussels constitute biogenic reefs on the sand and mud flats in this area. Survival and growth of the invading C. gigas were investigated and compared with the native mussels in order to predict the further development of the oyster population and the scope for coexistence of both species. Field experiments revealed high survival of juvenile C. gigas (approximately 70%) during the first three months after settlement. Survival during the first winter varied between > 90% during a mild and 25% during a cold winter and was independent of substrate (i.e., mussels or oysters) and tide level. Within their first year C. gigas reached a mean length of 35-53 mm, and within two years they grew to 68-82 mm, which is about twice the size native mussels would attain during that time. Growth of juvenile oysters was not affected by substrate (i.e., sand, mussels, and other oysters), barnacle epibionts and tide level, but was facilitated by fucoid algae. By contrast, growth of juvenile mussels was significantly higher on sand flats than on mussel or oyster beds and higher in the subtidal compared to intertidal locations. Cover with fucoid algae increased mussel growth but decreased their condition expressed as dry flesh weight versus shell weight. High survival and growth rates may compensate for years with low recruitment, and may therefore allow a fast population increase. This may lead to restrictions on habitat use by native mussels in the Wadden Sea.  相似文献   

5.
Most organisms in intertidal areas are marine in origin; many have distributions that extend into the subtidal zone. Terrestrial predators such as mammals and birds may exploit these animals during low tide and can have considerable effects on intertidal food webs. Several studies have shown that avian predators are capable of reducing densities of sessile and slow-moving intertidal invertebrates but very few studies have considered avian predation on mobile invertebrate predators such as crabs. In this study, we investigated predation by Great Black-backed Gulls (Larus marinus Linnaeus) on three species of crabs (Cancer borealis Stimpson, Cancer irroratus Say, and Carcinus maenas Linnaeus). The study was at Appledore Island, ME (a gull breeding island) and 8 other sites throughout the Gulf of Maine, including breeding islands and mainland sites. On Appledore Island, intertidal and subtidal zones provided over one-third of prey remains found at gull nests, and crabs were a substantial proportion (∼ 30% to 40%) of the total remains. Similarly, collections of prey remains from intertidal areas indicated that crabs were by far the most common marine prey. C. borealis was eaten far more often and C. irroratus and C. maenas less often than expected at each site. Comparing numbers of carapaces to densities of crabs in low intertidal and shallow subtidal zones at each site, we estimated that gulls remove between 15% and 64% of C. borealis during diurnal low tides. The proportion of C. borealis eaten by gulls was independent of proximity to a gull colony. Approximately 97% of the outer coast of Maine is within 20 km of a breeding island. Thus, a lot of gull predation on crabs may occur throughout the Gulf of Maine during summer months. Crabs are important predators of other invertebrates; if predation by gulls reduces the number of crabs in intertidal and shallow subtidal areas, gulls may have important indirect effects on intertidal food webs.  相似文献   

6.
Summary A state-dependent model has been used to predict daily and tidal patterns of migration, feeding and inactivity in juvenile plaice (Pleuronectes platessa L.) in their intertidal and shallow subtidal nursery areas. Vertical position, quantity of energy reserves and fullness of the gut characterized the state of individual fishes. If feeding is visually mediated, the model predicts that, by night, plaice should move to areas of low predation risk and become inactive, whereas by day, plaice should migrate to feed in areas of high prey encounter rate. Vertical zones adopted by day and night and, hence, patterns of migration, should depend on the distributions of predators and prey. When prey are more abundant in the intertidal zone, plaice should move onshore to feed as the tide rises and when prey are more abundant offshore, plaice should move offshore to feed by day. If predators are equally abundant in all zones, the fish should behave as if no predators were present, having no effective refuge. An increase in the abundance of predators with depth results in the restriction of plaice activities to shallower vertical zones, depending on the magnitude of the predation threat. Zones adopted thus depend on the trade-off between energy intake and predation risk. Concordance between predicted behaviour and observed patterns is evident in contrasting habitats. Migration and feeding in the Wadden Sea, where prey are more abundant on intertidal flats, is dominated by the tidal component, whereas on impoverished exposed beaches of the west coast of Scotland, the diurnal component is dominant. Tidally related behaviour persists in the latter environment, not predicted by the model and may be a consequence of using endogenous rhythms to approach optimal behavioural patterns.  相似文献   

7.
High recruitment of the bivalves Cerastoderma edule, Mytilus edulis, Macoma balthica and Mya arenaria in summer after severe winters is an often reported phenomenon in the Wadden Sea. After the severe winter of 1995/96 however, only Cerastoderma and Mytilus followed this pattern in the Sylt-R?m? Bight. Repeated sampling of Cerastoderma, Macoma and Mya following a severe (1995/96), a moderate (1996/97), and a mild winter (1997/98) revealed that early recruitment was highest after the mild winter. In Cerastoderma the eventual high recruitment at the end of summer 1996 was caused by reduced benthic mortality. Low recruitment of Macoma and Mya after the severe winter may have been caused by a higher susceptibility to epibenthic predation and/or a higher susceptibility to passive re-suspension than in Cerastoderma and Mytilus. In all cases, post-settlement processes were decisive for reproductive success. Received in revised form: 7 May 2001 Electronic Publication  相似文献   

8.
Shell preference patterns of two common hermit crabs from hard bottom reef flats on the Caribbean coast of Panama are examined in relation to the predation pressures and physical stresses of their habitat. Clibanarius antillensis Stimpson lives in the high intertidal habitat and minimizes exposure to predators by seeking refuge during high tides. It prefers high-spired shells which maximize protection from thermal stress. Calcinus tibicen Herbst avoids tidal emersion and prefers low-spired shells which enhance resistance to the predators common on Caribbean reef flats.The results are compared with similar results from the tropical eastern Pacific Bay of Panama. Shell-crushing predation on Caribbean hermit crabs is suggested to differ quantitatively and qualitatively from predation on hermit crabs in the Bay of Panama. Predation on hermit crabs in the Bay of Panama is more intense and effects larger individuals than predation on Caribbean reef flat hermit crabs. In addition, shell-crushing predation on hermit crabs in the Bay of Panama is primarily from teleost fish predators (Diodon spp.), while predation on Caribbean hermit crabs is primarily by bottom-dwelling crustaceans.Differences in predation pressures and tidal regimes between the Caribbean and Pacific coasts of Panama are reflected in the shell preferences and behavior of hermit crabs from the two areas.  相似文献   

9.
Variability in infaunal bivalve abundance in the Wadden Sea is largely determined by recruitment variability. Post-settlement, but pre-recruitment bivalve mortality is high and related to the occurrence of their most abundant predator, the brown shrimp Crangon crangon. To investigate if the mortality patterns of newly settled bivalves can be explained by the foraging behavior of brown shrimp, we carried out experiments on shrimp functional response to three size classes of juveniles of the Baltic Tellin Macoma balthica. The functional response curves for all three prey sizes (0.62 mm, 0.73 mm, and 0.85 mm) were the hyperbolic Holling's type II. The attack rate was highest for the smallest prey size (a = 0.31, medium and large prey a = 0.22); the handling time was longest for the largest prey size (Th = 29 s, small and medium prey Th = 15 s). Thus, a large body size is advantageous for the bivalves over the whole density range. Knowledge of individual foraging behavior is needed to model predation mortality of bivalves. The consumption rates in the experiment were theoretically high enough to account for M. balthica mortality in the field.  相似文献   

10.
Experiments on epibenthic predation in the Wadden Sea   总被引:1,自引:1,他引:0  
Field experiments were designed to evaluate the role of predators in the Wadden Sea, small predators like shore crabs, shrimps and gobies, and large ones like flatfish and birds. Exclosures, maintained in aCorophium volutator bed, an eelgrass bed, in a sandy and a muddy flat, protected the infauna from such epibenthic predation. The resulting changes in the macrofauna were recorded and compared with an unaffected control area. In sandy and muddy flats of the lower intertidal zone, cages (mesh size5 mm) altered abundance and composition of the infauna almost entirely. Nearly all species achieved higher population densities than in the control area, and in addition, the number of species increased as well. In the the scarcely populated mud flat a dense suspension-feeder assemblage emerged, associated with numerous tube-building polychaetes. The sand flat, normally dominated by deposit feeders, also became occupied by a dense suspension-feeder assemblage, mainly cockles. In contrast, narrowly meshed cages had only little effect in the beds of eelgrass and ofCorophium volutator. Both are positioned in the upper intertidal zone. Although a number of species still responded with significant increases in abundance, many remained indifferent or even tended to be less abundant within cages. Cages provided with a 20-mm mesh nylon net, excluding only birds, flatfish and the biggest crabs, increased significantly the survival of large-sized infaunal members. This was only apparent in the upper intertidal zone. It was concluded, that small sized epibenthic predators are the major determinants of the dynamic species abundance pattern of the lower intertidal flats. In the eelgrass bed, the meshwork of rootlets constitutes an important spatial refuge from these predators. The complex habitat structure causes a diversified faunal assemblage. TheCorophium bed in the uppermost intertidal zone is less accessable to predators like crabs, shrimp and gobies. The monotonous appearance of this faunal assemblage is assumed to be the outcome of competitive exclusion and of occasional harsh physical conditions.  相似文献   

11.
To document the relative importance of meiofauna as prey for juvenile Crangon crangon and Carcinus maenus, short interval (1.5-2 h) collections were made in the muddy Lynher Estuary (Plymouth, Great Britain) and in the sandy-bottom Ythan Estuary (Aberdeenshire, Scotland) in 1990. Gut passage times of Crangon fed flaked fish food and fluorescent tracer in the laboratory at 13 °C ranged from 4 to 20 h. Wild shrimp exhibited feeding periodicity, with guts fullest during high tide in both locations. Visual and immunological gut contents analyses revealed that meiofaunal nematodes and harpacticoid copepods were present only in recently settled shrimp from 8 to 12 mm total length on muddy bottoms. Larger shrimp collectively consumed up to 33 different macrobenthic prey types. Shrimp were fullest at night (mean gut contents weight = 8% wet body weight, Lynher) or at dawn (6%, Ythan). The Lynher Carcinus gut contents—from animals 8 to 30 mm carapace width, examined visually only—contained mostly fluids, green benthic algae, sediment particles, and masses of unidentifiable prey remains plus digestion-resistant hard parts visually identifiable as macrobenthic in origin. None of the 203 crabs examined from the 24-h collection contained meiofaunal prey. Crangon shrimp probably eat meiofaunal prey for only a brief period of time after their initial settlement to the bottom. Evidence for significant top-down impacts on meiofauna from these two abundant shallow-water predators was weak. More trophic studies are needed on newly settled epibenthic predators to test the hypothesis that biological control of shallow-water meiofauna is important.  相似文献   

12.
Living conditions for macrofauna on flood delta shoals are determined by surf, strong currents and sediment mobility. Thus, a unique assemblage of invertebrate species colonize these far off-shore, low intertidal flats. We here describe the macrobenthic fauna of emerging shoals in the Wadden Sea between the islands of Römö and Sylt. Besides ubiquitous macroinvertebrates of the intertidal zone and species which attain their main distribution in the subtidal zone, the flood delta shoals are characterized by organisms adapted to live in these highly unstable sediments, like the polychaetesSpio martinensis, Streptosyllis websteri, Magelona mirabilis, Psammodrilus balanoglossoides, the pericarid crustaceansCumopsis goodsiri, Tanaissus lilljeborgi, Bathyporeia sarsi and a few others. Average abundance (1440 m?2 of ind >1 mm) and biomass (12.9 g AFDW m?2) were low compared to other intertidal habitats in the Wadden Sea. Biomass was dominated by largesized individuals of the lugwormArenicola marina. The U-shaped burrows of these polychaetes were inhabited by high numbers ofUrothoe poseidonis. Maximum densities of these amphipods occurred in the deepest parts of the burrows. Sampling at approximately montly intervals revealed no apparent seasonality ofU. poseidonis abundance. Together with smallCapitella capitata, these amphipods constitute a deep-dwelling component of the macrofauna associated with lugworms, which is separated from all other macrofauna living at the sediment surface. As a response to rising sea level and increasing tidal ranges, we expect the unstable sandy shoals, inhabited by numerousSpio martinensis andUrothoe poseidonis, to expand within the Wadden Sea at the cost of stable sandy flats with abundant macrofauna.  相似文献   

13.
Deposit-feeders are common components of macrofaunal assemblages in intertidal soft sediments. Predation has been considered to have a central role in affecting their distribution and population dynamics. This study investigates the effect of epibenthic predators on deposit-feeders, inhabiting the shallow layers of the sediment (surface and subsurface) and also the deepest layers (e.g., burrowing shrimp Upogebia pusilla; Petagna). The experiment was conducted in summer 2000 (August-September) at three different sites on an intertidal flat in Mediterranean Sea. In the field, predators were excluded using cages, placed on the surface of the sediment. It was predicted that under the cages, (i) abundances of animals would increase and (ii) species composition of assemblages would change as an effect of the exclusion of predators. Potential artefacts caused by the cages were controlled using partial cages (PC). Composition of organic matter and porosity were also analysed under PC and in natural controls to test whether the presence of cages would change sediment characteristics on the surface. At the end of the experiment, there were no significant differences in the composition of organic matter between PC and the undisturbed sediment (UC). After 8 weeks from the beginning of the experiment, exclusion of predators enhanced the abundance of U. pusilla. There were, however, no clear-cut changes in the species composition of macrofaunal assemblages and densities of animals did not increase under the cages. Indeed, some animals (Oligochaeta, Brania oculata, and Tanais dulongii) were less abundant under the cages (EC) than outside (PC and UC). We propose that predation might play a role in regulating interspecific relationships among some surface deposit-feeders and the burrowing shrimp U. pusilla.  相似文献   

14.
Predation appears to be the single most important biotic factor regulating populations of bivalves in estuarine and coastal soft sediments. However, the relative roles of predation and intraspecific competition are rarely investigated simultaneously over different spatial scales, making generalities about these mechanisms difficult. Using juveniles of the soft-shell clam, Mya arenaria (initial mean shell length [SL] ± 95% CI = 12.4 ± 0.13 mm), I tested the interactive effects of predator deterrence and intraspecific density (660 vs. 1320 individuals m− 2) on growth and survival responses over a 185-day period from May to November 2003 at spatial scales that spanned four orders of magnitude: embayments, sites within embayments, tidal gradients, and blocks that were 10,000's, 1000's, 100's, and 5 m apart, respectively. Replicate field experiments were conducted from May to November 2003 at the upper and lower tidal heights at each of two intertidal mud flats (sites) within each of two embayments (Passamaquoddy Bay [PB] and Cobscook Bay [CB]) in eastern Maine.Mean survival, relative growth, and the abundance of wild recruits each varied significantly over all spatial scales. Predation was the most important factor affecting clam survival, explaining 45% of the total variability, whereas embayment, sites within embayments, tidal gradient, and intraspecific density collectively accounted for less than 10% of the variation. At all four intertidal sites, clam survival in experimental units designed to deter predators averaged 72%, but the degree of enhancement varied between embayments (PB = 61%; CB = 267%). Average survival rate was higher (by 12-16%), but growth was slower (by ca. 50%) in upper vs. lower intertidal blocks; however, the patterns differed for both variables between sites within each embayment. The effect of increasing intraspecific clam density was to lower survival by ca. 17% (56% [660 m− 2] vs. 48% [1320 m− 2]) in both embayments, but growth was unaffected. Overall, clams doubled in SL, although mean relative growth was 15% greater in CB than PB. Tidal gradient, sites within embayments, and blocks were the three most important factors explaining 35%, 19%, and 22% of total variation in relative clam growth, respectively. In Maine and the northeast US, juveniles of Mya reach their highest abundance above mean low tide levels. Experimental evidence presented here suggests that differential predation along the tidal gradient is the dominant factor controlling clam abundance and distribution patterns in the intertidal zone.  相似文献   

15.
The intertidal periwinkleLittorina saxatilis completely lacks larval dispersal and adult vagility is low. Although this suggests a low dispersal rate,L. saxatilis is frequently found in recently established habitats “exotic” to the Wadden Sea. Populations occur on man-made structures like dikes, breakwater and groynes, some of which are not older than several years. Furthermore,L. saxatilis is found on marsh grassSpartina anglica, introduced to the Wadden Sea in the 1920s and 1930s, as well as on mats of green macroalgae, which have become an abundant feature on the tidal flats since the late 1970s. Seagrass beds are likely to be the original habitat ofL. saxatilis in the Wadden Sea. Since seagrass populations have dramatically declined over the last decades, colonization of new habitat types enabledL. saxatilis to maintain its Wadden Sea populations despite a changing environment. Colonizers can reach new habitats by means of passive transport, especially by rafting on macrophytes and by aerial dispersal attached to birds. In thew Wadden Sea, the ovoviviparously reproducingL. saxatilis has demonstrated its ability to successfully found new populations with only a few individuals. No reduction of genetic variablility (founder effect) was observed in recently established populations.  相似文献   

16.
A purple sulfur bacterium, strain SW26, was isolated in pure culture from intertidal sediments from the Sylt-Rømø Basin, German Wadden Sea, sharing many properties with validated Marichromatium species, but differing significantly by possessing a plasmid, by tolerating up to 16 mM sulfide, and up to 44 °C for growth. Strain SW26 has a DNA base composition of 68.3 mol% G+C, a 16S rRNA gene sequence similarity of >99% to those of Marichromatium species, and shows the highest level of genomic relationship with Marichromatium gracile, despite its remarkably different phenotypic characters. Based upon high genomic similarity but different physiological properties of strain SW26 with respect to the type strain of M. gracile, a novel biotype, designated as M. gracile biotype thermosulfidiphilum is described.  相似文献   

17.
The extent to which it pays settling larvae of marine benthic organisms to actively select the habitat where they will spend the rest of their life can only be fully appreciated if the fitness consequences of such habitat selection processes are known. We estimated the lifetime egg production of the tellinid bivalve Macoma balthica at 11 sites over a tidal gradient in the western Wadden Sea, using a 30-year data series. The difference in individual lifetime egg production between the best sites in the lower tidal zone and the poorest sites on the high tidal flats was about a factor 10. The differences in lifetime egg production were related to differences in growth and, more importantly, survival. We argue that the large observed differences in reproductive output do not necessarily imply a lack of active habitat selection. As most animals start their last migration before final settlement from the high tidal flats, the choice may be one between a long and risky migration with a low chance of reaching the good habitat versus a more certain but poor existence on the high tidal flats. Electronic Publication  相似文献   

18.
The periodicity of increment formation in the shell of the Manila clam Ruditapes philippinarum was investigated in the subtidal zone of the Auray River estuary (South Brittany, France). Calcein markings were performed at different periods between May and October 2007 using in situ benthic chambers tented by scuba divers. This study shows that shell microgrowth increments were well-defined and deposited with a tidal periodicity in the subtidal zone, providing the calendar base for high-resolution ecological studies and environmental reconstruction from these R. philippinarum shells. Endogenous rhythmicity in shell microgrowth increment formation and oxygen consumption was previously documented in this species from intertidal flats. Our study suggests that, in the subtidal zone, Manila clams' rhythmic activity may be controlled by such an endogenous process, synchronized by tidal cues. As in other bivalves, R. philippinarum is an osmoconformer euryhaline bivalve. The tidal rhythmicity of shell microgrowth increments in subtidal specimens of this species could be explained by a behavioral adaptation of valve closure at low tide to protect the clam from low salinities and/or to synchronize with food availability. Finally, large inter-individual variability in tidally associated growth rates and asynchronous growth breaks were observed, and could be due to genetic variability between individuals, asynchronous partial spawning events or predation.  相似文献   

19.
Knowledge on the distribution, abundance and species richness of intertidal macroalgae occurring on sandy and muddy flats of the German Wadden Sea is still incomplete. We summarize published and unpublished information available on the presence of macroalgae on the tidal flats of Königshafen Bay (island of Sylt, North Sea), one of the more extensively studied areas of the Wadden Sea. A total of 46 green algal species, 36 brown algal species and 26 red algal species has been recorded within the last 120 years on soft and hard substrata of Königshafen Bay (disregarding species found unattached or drifting). Several of these species were only temporarily resident on the tidal flats. Today, at least 35 green, 15 brown and 12 red algal species occur within or close to Königshafen Bay. Significant long-term changes in species abundances have occurred in all three major groups of algae: Since the late 1970s, dense green algal mats dominated byEnteromorpha flexuosa, E. radiata andE. prolifera have occurred regularly on the intertidal flats, whereas a general decrease of brown and red algae has been documented. Two red algal species,Gracilaria verrucosa and its epiphyteCallithamnion corymbosum, were conspicuous members of the macroflora until the middle of this century. Although still present in the 1980s, they have now disappeared completely. On the other hand, the brown algaSargassum muticum has begun to colonize mussel beds. The causal background of long-term changes in the macroalgal flora of Königshafen Bay is discussed. Owing to substantial nomenclatural changes during the last 120 years, a revised species list with authors’ names and synonyms is included.  相似文献   

20.
Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface. Previous laboratory experiments have established an understanding of the role of current flow in dictating the choice of whether suspension or deposit feeding will be used by marine invertebrates with the facultative flexibility to choose. Faster flows imply greater fluxes of suspended particles so that the energetic rewards of suspension feeding are enhanced. Slower flows imply reduced renewal rates of suspended foods in the bottom boundary layers and enhanced deposition of food particles on the seafloor so that a switch to deposit feeding is favored. Like early optimal foraging theory, this understanding is based on energetic considerations alone without incorporation of broader implications of how population interactions such as predation and competition influence individual foraging behavior. Feeding behavior of Macoma balthica is influenced in the Neuse River estuary by both hydrodynamics and siphon-cropping by juvenile demersal fishes. Under conditions of identical concentrations of suspended particulates in the water column and organic contents of surface sediments, Macoma exhibited much higher levels of deposit feeding where currents were slower. In addition, exclosure and fish inclosure experiments demonstrated that juvenile demersal fishes influence feeding behavior of Macoma by cropping exposed siphons and inducing reduction in deposit-feeding activity. Effects of croppers were substantial in early to midsummer, when juvenile fish abundances were greatest in trawl samples from this estuarine nursery and before the growing fish exhibited ontogenetic changes in diet away from early concentration on bivalve siphons. Field experiments in which siphon-cropping fish were caged at varying distances off the bottom failed to detect any effective behavioral avoidance by Macoma of cropping in response to proximity of fish. One might have hypothesized that under high risk of cropping, Macoma would switch to suspension feeding and away from deposit feeding, the feeding method entailing more risk of losses to croppers because of greater siphon activity and greater extension of siphons on the sediment surface. Consequently, partial predation by siphon-cropping fishes greatly reduces deposit-feeding activity by Macoma balthica during summer as an apparent direct effect of disfigurement and reduction of siphons, the organ required for efficient deposit feeding. Information on current flows alone would not suffice to predict feeding behavior of this marine invertebrate: the influence of partial predation must also be included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号