首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 7 毫秒
1.
The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-B beta. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-B beta to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-B beta to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-B beta(L231A, L233A). These data provide strong evidence that SH2-B beta shuttles constitutively between the nucleus and cytoplasm. However, SH2-B beta needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-B beta on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.  相似文献   

2.
3.
4.
Interaction between the extracellular matrix and integrin receptors on cell surfaces leads not only to cell adhesion but also to intracellular signaling events that affect cell migration, proliferation, and survival. The vitronectin receptor alpha(v)beta(3) integrin is of key importance in glioma cell biology. The expression of urokinase-type plasminogen activator receptor (uPAR) was recently shown to co-regulate with the expression of alpha(v)beta(3) integrin. Moreover, restoration of the p16 protein in glioma cells inhibits the alpha(v)beta(3) integrin-mediated spreading of those cells on vitronectin. Thus we hypothesized that adenovirus-mediated down-regulation of uPAR and overexpression of p16 might down-regulate the expression of alpha(v)beta(3) integrin and the integrin-mediated signaling in glioma cells, thereby defeating the malignant phenotype. In this study, we used replication-deficient adenovirus vectors that contain either a uPAR antisense expression cassette (Ad-uPAR) or wild-type p16 cDNA (Ad-p16) and a bicistronic adenovirus construct in which both the uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16) are inserted in the E1-deleted region of the vector. Infecting the malignant glioma cell line SNB19 with Ad-uPAR, Ad-p16, or Ad-uPAR/p16 in the presence of vitronectin resulted in decreased alpha(v)beta(3) integrin expression and integrin-mediated biological effects, including adhesion, migration, proliferation, and survival Our results support the therapeutic potential of simultaneously targeting uPAR and p16 in the treatment of gliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号