首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asialoglycoprotein receptors, responsible for the removal of circulating asialoglycoproteins by the liver, are located in at least two different membrane locations in hepatocytes. Receptors on the cell surface account only for a minor proportion (20-36%), for the majority of receptors in the liver are located intracellularly, mainly in the endocytic membrane networks. An understanding of the basis of receptor distribution and the underlying trafficking of receptors between the hepatocyte's polarised cell surface and the endocytic compartment would be aided if biochemical differences between the receptors in these pools were established. We now show, using three antibodies that recognise the receptor subunits in rat liver (RHL-1, RHL-2 and RHL-3), that the asialoglycoprotein receptors located in the plasma membrane domains and the endocytic compartment differ in oligomeric composition, sialic acid content, and solubility in Triton X-114 using two-phase systems. It is well established that the expression of the asialoglycoprotein receptor is down-regulated in livers regenerating after a partial hepatectomy. We demonstrate that the levels of the receptor subtype that is located mainly in the endocytic compartment (RHL-1, 42 kDa) was elevated in regenerating liver by agents that regulate cAMP production, whereas the levels of the other receptor subtypes remained unchanged. The asialoglycoprotein receptor subtypes that are present in different subcellular locations are thus regulated independently.  相似文献   

2.
We have shown that degradation of asialo-orosomucoid (ASOR) in isolated rat hepatocytes occurs by two different intracellular pathways [Clarke, Oka & Weigel (1987) J. Biol. Chem. 262, 17384-17392] mediated by two subpopulations of cell surface galactosyl (Gal) receptors, designated State 1 or State 2 receptors. In the present study, several inhibitors were tested for their effects on ligand degradation by the State 1 or State 2 pathway. Leupeptin, monensin and chloroquine completely inhibited degradation of 125I-labelled ASOR in both pathways. Dose-response studies showed, however, that the State 2 pathway was more sensitive to leupeptin or monensin than the State 1 pathway. No differences were observed with chloroquine. For example, the onset of inhibition in the State 2 and State 1 pathways occurred at about 0.05 and 0.3 microM-leupeptin respectively, a 6-fold difference. At 3.5 microM-monensin, 125I-ASOR degradation in the State 2 pathway was completely blocked, whereas degradation in the State 1 pathway was essentially unaffected. Colchicine was observed to give the largest differential sensitivity between the two pathways. The State 2 degradation pathway was about 30-fold more sensitive to colchicine than the State 1 pathway. Lumicolchicine had no affect. The onset of inhibition of the rate of 125I-ASOR degradation in the State 2 and State 1 pathways occurred at approximately 0.1 and 3.0 microM-colchicine respectively. At very high concentrations (greater than 0.1 mM), the State 1 pathway could be completely inhibited. We conclude that intracellular 125I-ASOR processing or delivery to degradative compartments in both the State 1 and State 2 Gal receptor pathways requires low pH. Ligand delivery to the degradative compartment does not require microtubules in the State 1 pathway, consistent with the very rapid onset of degradation in this pathway. The State 2 degradation pathway does require microtubules.  相似文献   

3.
A cloned cDNA encoding the major rat liver asialoglycoprotein receptor has been used to analyze the gene for this protein. Genomic Southern blot analysis reveals that the gene is contained on a single EcoRI restriction fragment and is unique. A clone containing the gene (isolated from a rat liver genomic library) has been characterized by sequence analysis. The mRNA for the receptor is encoded by nine exons separated by eight introns. The first exon is confined to the 5'-untranslated region of the mRNA, the second exon encodes most of the cytoplasmic NH2-terminal domain of the receptor polypeptide, the third exon corresponds to the hydrophobic transmembrane portion of the polypeptide, and the remaining exons encode the extracellular parts of the receptor. Some, but not all, of the divisions between exons correspond to boundaries between functional domains of the polypeptide.  相似文献   

4.
Human asialoglycoprotein receptor H1 and H2b subunits assemble into a hetero-oligomer that travels to the cell surface. The H2a variant on the other hand is a precursor of a cleaved soluble form that is secreted. Uncleaved H2a precursor molecules cannot exit the endoplasmic reticulum (ER), a lumenal juxtamembrane pentapeptide being responsible for their retention. Insertion of this pentapeptide into H1 (H1i5) causes its complete ER retention but not fast degradation as happens to H2a. Cotransfection of H2a elicited, by heterodimerization, the Golgi processing of H1i5 and its surface expression. This occurred to a much lesser extent by cotransfection of H2b. Likewise, coexpression of H1i5 and not H1 stabilized H2a and caused its export to the cell surface. Homodimerization of molecules containing the pentapeptide did not cancel the retention. Thus, only when the pentapeptide is present in both subunits is the ER retention efficiently abrogated. The results show the unexpected finding that identical ER retention signals present in two associated chains can mask and cancel each other's effect. This could have important implications as similar abrogation of ER retention of other proteins could eventually be obtained by engineering and coexpressing an associated protein containing the same retention signal.  相似文献   

5.
We used high-resolution immunocytochemistry on ultrathin frozen sections labeled with colloidal gold to study the subcellular distribution of the asialoglycoprotein receptor in rat liver. The receptor was localized along the entire hepatocyte plasma membrane, including the bile capillary membrane, but was scarce intracellularly. Sinusoidal lining (Kupffer) cells and blood cells showed no immunoreactivity. In liver cells of rats injected with 1 to 100 micrograms of asialoorosomucoid (ASOR) 2-15 min before tissue fixation, endocytotic internalization of receptors at the blood front was conspicuous. At all times in this interval, receptor was present in approximately 100-nm vesicles and larger vacuoles adjacent to the sinusoidal plasma membrane. No other significant intracellular receptor was noted during the 15-min exposure to ASOR; in particular, lysosomes and Golgi complex were not labeled. Our observations, in combination with data from the literature which demonstrate that, under these conditions, the ligand is transferred further to the Golgi complex-lysosome region, suggest that the receptor and ligand are dissociated in the vicinity of the plasma membrane, after which the receptor rapidly returns to the cell surface.  相似文献   

6.
The number of cell surface and total asialoglycoprotein receptors was investigated in normal and diabetic rat hepatocytes using 2 methods: ligand and polyclonal antibody binding. An identical number of immunoreactive receptors was found in both types of cells, while the ligand binding activity of cell surface receptors was reduced by 58% in diabetic rats compared with normal ones, or by 33% for total cell receptors.  相似文献   

7.
Intracellular transport of a newly synthesized asialoglycoprotein receptor was studied biochemically using a monospecific antibody for the receptor. Pulse-labeling by intravenous injection of [3H]leucine and pulse-chasing after 10 min by cycloheximide injection resulted in the maximal labeling of the receptor in the rough microsomes at 15 min, in the smooth microsomes and the heavy Golgi subfraction (GF3) at 25 min and in the intermediate plus light Golgi subfraction (GF1+2) at 30 min. By 60 min, the labeling in GF1+2 had decreased and leveled off. In the plasma membrane fraction, the labeled receptor first appeared at 20 min, increased rapidly and also reached a constant level at 40-60 min. Intracellular movement of the newly synthesized receptor in the GF1+2 and plasma membrane fractions was also investigated by purifying the receptor protein from the GF1+2 and plasma membrane fractions by affinity chromatography. It was revealed that the specific radioactivities of the receptor in the two fractions become equilibrated after 60-120 min. The receptor of the various membrane fractions was also pulse-labeled in vivo for 20 min simultaneously with [3H]glucosamine and [14C]leucine, and pulse-chased for the following 40 min. After pulse-labeling for 20 min, the ratio of the radioactivity of [3H]glucosamine or [3H]sialic acid to [14C]leucine of the receptor from the rough and smooth microsomes, and GF3, GF2, and GF1 increased in that order. That of the receptor from the plasma membrane fraction was infinitely higher, because, while a significant amount of 3H-radioactivity was incorporated into the receptor in the Golgi apparatus, only a negligible amount of 14C-radioactivity was incorporated into the same receptor in the plasma membrane due to the delay in the arrival of [14C]leucine labeled receptor to the plasma membrane. After chasing for 40 min, however, the same radioactivity ratios of the GF1 and plasma membrane fractions approached each other. All these results strongly suggest that the distribution of the newly synthesized receptor becomes rapidly equilibrated between the trans-Golgi components and plasma membranes probably by repeated recycling of the receptor protein between the two membranes.  相似文献   

8.
Phosphorylation of asialoglycoprotein receptor was investigated by using rat hepatocytes. Analysis of the purified receptor by SDS-PAGE and autoradiogram revealed that the 64 and 54 Kd polypeptides of the receptor were phosphorylated but the 43 Kd one was not and that phosphorylation took place at the cell surface. These results are compatible with the fact that the 64 and 54 Kd species exist predominantly at the cell surface. The sites of phosphorylation were identified as Ser and Thr with no detectable radioactivity in phosphotyrosine.  相似文献   

9.
Three derivatives of a triantennary glycopeptide, each containing a single uniquely located 6-amino-galactose residue at either position 6', 6, or 8, were modified at the 6-amino group by attachment of a photolyzable reagent and radiolabeled by iodination of tyrosine. These were allowed to bind to the asialoglycoprotein receptor of isolated rat hepatocytes and photolyzed for affinity labeling. (formula; see text) Each probe specifically labeled either the major (RHL1) or minor (RHL2/3) subunits which comprise the receptor. A photolyzable group attached to galactose residue 6 6' specifically radiolabeled RHL1, whereas a photolyzable group attached to galactose 8 specifically labeled RHL2/3. Photoaffinity labeling of a soluble rat hepatic lectin preparation demonstrated that the minor subunits (RHL2/3) were no longer labeled by the triantennary probe with a photolyzable group at galactose 8. The inhibitory potency of a variety of complex glycopeptides against radiolabeled ligand binding to both rat hepatocytes and soluble lectin are in agreement with photoaffinity results that galactose 8 of triantennary glycopeptide is of unique importance by binding solely to the minor subunits (RHL2/3) of the asialoglycoprotein receptor on hepatocytes. Conversely, galactose residues 6 and 6' bind specifically to the major subunit (RHL1), indicating a precise binding geometry between the trivalent ligand and lectin.  相似文献   

10.
We have examined the rate of dissociation of internalized 125I-asialo-orosomucoid-receptor complexes in freshly isolated rat hepatocytes. Cell suspensions were washed with ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid at 0 degrees C to remove surface-bound ligand and then assessed for the retention of radioactive glycoprotein in the presence of digitonin, which permeabilized the cells and released the internal soluble contents. In cells which initially contained only surface-bound ligand, about 50% of the internalized ligand dissociated from receptor very rapidly (t1/2 less than or equal to 2.5 min, k greater than or equal to 0.28 min-1), at 37 degrees C, whereas the other 50% dissociated more slowly with apparent first order kinetics (t1/2 = 50 min, k = 0.014 min-1). This equal distribution of internalized ligand into two compartments, from which dissociation occurred with very different kinetics, did not depend on the extent of surface receptor occupancy and also occurred under non-steady state conditions of continuous exposure to ligand. Ligand entering both the rapid and slow dissociation compartments was eventually degraded with apparent first order kinetics (k = 0.0047 min-1), suggesting that the intracellular routing of ligand to lysosomes after dissociation from either compartment was via the same pathway. The fast and slow dissociation of receptor-ligand complexes were also distinguished by different temperature sensitivities; the slow dissociation process ceased below 18 degrees C, whereas the fast dissociation process still proceeded. The equal partition of internalized complexes into the two kinetic compartments did not change as a function of temperature but did change as cells continued to endocytose asialo-orosomucoid at 37 degrees C. As the internal receptor pool approached a steady state level of occupancy, there was an increase in the average time for receptor recycling and an increase in the fraction of incoming receptor-ligand complexes which dissociated rapidly (approximately 75%). In addition, under steady state conditions, the rate of the slow dissociation process increased (k = 0.026 min-1, t1/2 = 27 min).  相似文献   

11.
We have generated antibodies against synthetic peptides which represent the carboxyl terminus of either the major, or the two minor, forms of the rat hepatic lectin which recognizes galactose-terminated glycoproteins (asialoglycoproteins). The antibodies were shown to be specific for the form of the lectin containing the immunizing peptide sequence by the following: reaction with purified lectin after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoprecipitation of sodium dodecyl sulfate-denatured lectin, immunoprecipitation of lectin synthesized in vitro. These antibodies, however, precipitated all three rat hepatic lectin forms from nonionic detergent extracts of hepatocytes labeled with 125I via the lactoperoxidase catalyzed technique. A similar result was obtained if antibody was bound to intact cells prior to solubilization with detergent and collection of the immune complexes. We conclude that at least the plasma membrane-associated fraction of the rat hepatic lectin forms exists as a heterotypic complex.  相似文献   

12.
cDNA clones for the major rat liver asialoglycoprotein (ASGP) receptor were isolated from a phage gtl 1 library using synthetic oligonucleotide probes corresponding to two regions of the protein sequence. The longest clone obtained encoded all but the first 11 codons of the receptor. The cDNA was completed with synthetic oligonucleotides and was used to direct the synthesis of mRNA for the receptorin vitro. Subsequent translation in a wheat germ lysate produced authentic ASGP receptor which assembled correctly into microsomal membranes.  相似文献   

13.
14.
The binding of D-glucosyl-neoglycoproteins and D-galactose-terminated glycoproteins to the hepatic asialoglycoprotein receptor of rabbit liver membranes were characterized and compared. The binding of both types of glycoproteins showed the same dependence on calcium concentration, sensitivity to neuraminidase, and degree of inhibition by various carbohydrate derivatives. These results, along with the observation that the rabbit liver membranes bound both the D-glucosyl- and D-galactosyl-terminated glycoproteins to the same extent, indicated that both types of glycoproteins bound to the same receptor. To confirm this hypothesis, receptors were isolated from rabbit livers by affinity chromatography using D-galactosyl-bovine serum albumin or D-glucosyl-bovine serum albumin immobilized on Sepharose. These receptors were shown to be identical by several chemical and immunological criteria as well as in their ability to bind equal amounts of D-galactosyl- and D-glucosyl-terminated glycoproteins. The conclusion is that the rabbit hepatic asialoglycoprotein receptor cannot discriminate between D-galactosyl and D-glucosyl-terminated glycoproteins and binds both.  相似文献   

15.
Non-acylated tRNA binding on rat liver 60S subunits   总被引:1,自引:0,他引:1  
The ability of rat liver ribosomes and subunits to form complexes with non-acylated tRNAs in the absence of mRNA has been studied using nitrocellulose membrane filtration technique. Binding to 60S subunits required the integrity of the pCpCpA end of the tRNA molecule and was not decreased when unpaired guanine had been modified using kethoxal. Scatchard plot analysis suggests that large subunits have two binding sites, whose affinity constant values, relatively high, vary according to the ionic composition of the medium. Thus, the affinity constant of the stronger site (about 3. 109 M?1) is from 7 to 21 times higher than that of the weaker. High Mg2+ and low K+ concentrations stabilized binding to both sites. tRNA is at least partly retained on the subunits by heat-labile bonds.  相似文献   

16.
17.
Recent studies suggest that protein kinase C and, thus, possibly the rate of inositol phospholipid hydrolysis may regulate the function and distribution of the asialoglycoprotein (or galactosyl) receptor on isolated rat hepatocytes (Takahashi et al., Biochem. Biophys. Res. Commun., 1985, 126, 1054; Fallon and Schwartz, J. Biol. Chem., 1986, 261, 15081). We have studied the effects of asialoorosomucoid (ASOR) on the hydrolysis of [32P]-inositol phospholipids in isolated rat hepatocytes. When internalization of ASOR is maximal at 310 molecules/cell/sec, there is neither a decrease in the amount of [32P]-phosphatidylinositol-4,5-bisphosphate (PIP2) nor an increase in [32P]-phosphatidic acid (PA) up to 30 min after stimulation. On the other hand, 10(-6)M vasopressin, which was used as a positive control, caused a 35-40% decrease in the level of [32P]-PIP2 and a 70-80% increase in [32P]-PA within 30 sec. Addition of orosomucoid or ASOR, even at concentrations 1000-times the Kd, did not change the levels of any of the six phospholipids tested. Similarly, addition of ASOR did not increase the levels of soluble [3H]-inositol phosphates, whereas vasopressin caused a 6-fold increase in [3H]-inositol-1,4-diphosphate (IP2) and a 4-fold increase in [3H]-inositol-1,4,5-triphosphate (IP3) in isolated rat hepatocytes prelabeled with [3H]-inositol. We conclude that the receptor mediated endocytosis of asialoglycoproteins by rat hepatocytes does not stimulate hydrolysis of the inositol phospholipids.  相似文献   

18.
The rat hepatic asialoglycoprotein receptor mediates clearance of galactose- and N-acetylgalactosamine-terminated glycoproteins by endocytosis, binding ligands through a C-type, Ca(2+)-dependent carbohydrate-recognition domain (CRD) at extracellular pH and releasing them at lower pH in endosomes. At physiological Ca(2+) concentrations, the midpoint for ligand release from the CRD of the major subunit of the receptor is pH 7.1. In contrast, the midpoint is pH 5.0 for a galactose-binding derivative of the homologous C-type CRD of serum mannose-binding protein, which would thus not efficiently release ligand at an endosomal pH of 5.4. Site-directed mutagenesis of the CRD from the major subunit of the asialoglycoprotein receptor has been used to identify residues that are essential for efficient release of ligand at endosomal pH. The effects of changes to residues His(256), Asp(266), and Arg(270) singly and in combination indicate that these residues reduce the affinity of the CRD for Ca(2+), so that ligands are released at physiological Ca(2+) concentrations. The proximity of these three residues to the ligand-binding site at Ca(2+) site 2 of the domain suggests that they form a pH-sensitive switch for Ca(2+) and ligand binding. Introduction of histidine and aspartic acid residues into the mannose-binding protein CRD at positions equivalent to His(256) and Asp(266) raises the pH for half-maximal binding of ligand to 6.1. The results, as well as sequence comparisons with other C-type CRDs, confirm the importance of these residues in conferring appropriate pH dependence in this family of domains.  相似文献   

19.
Rat hepatic asialoglycoprotein receptors (ASGP-Rs) bind terminalclustered galactosyl or N-acetylgalactosaminyl residues withhigh affinity. The affinity-purified ASGP-R consists of threesubunits designated RHL1, RHL2, and RHL3. The ligand-bindingactivity of individual subunits was investigated by ligand blotting,after separation of subunits by SDS-PAGE under nonreducing conditions,electrotransfer to nitrocellulose, and incubation with 125I-asialo-orosomucoid(ASOR). No ligand-binding to any subunits could be detectedwhen proteins such as BSA, casein, gelatin, or fat-free drymilk were used as blocking agents. However, subsequent incubationof BSA-blocked nitrocellulose blots with some nonionic detergentsresulted in renaturation of RHL1. 125I-ASOR-binding to RHL2or RHL3 was weaker and could be detected only after longer exposure.Similarly, direct use of detergents such as Tween 20, NonidetP-40, or Triton X-100 as blocking agents also preserved theASOR-binding activity of RHL1. Ionic detergents tested did notshow any ability to renature the ligand-binding activity ofRHL subunits. Among nonionic detergents tested, Tween 20, Tween85, Lubrol PX, Nonidet P-40, and Triton X-100 were more effectivethan Tween 40, Tween 65, Tween 80, or Brij 35, whereas SPAN,digito-nin, or octyl-glucoside showed no effect. Weak 125I-ASORbinding to RHL2 or RHL3 could be detected only when the Tweenseries or Lubrol PX were used. Incubation of blots with dithiothreitolcaused a dose-dependent loss of binding activity. The carbohydraterecognition domain (CRD) of RHL1, isolated after subtilisindigestion of ASGP-R bound to ASOR-Sepharose, retained ligand-bindingactivity as assessed by its binding to ASOR-Sepharose and byligand blotting. 125I-ASOR binding to electroblotted CRD afterSDS-PAGE was also dependent on the presence of nonionic detergents.We conclude that restoration of ligand-binding activity of RHL1after SDS-PAGE by some nonionic detergents is not dependenton the presence of the cytoplasmic, transmembrane, or stalkdomains of this subunit. asialoglycoprotein receptor Ligand blotting detergent renaturation RHL1  相似文献   

20.
In order to gain a better understanding of the distinctive mechanisms of the various types of antiprogestins, we have characterized in vitro ligand binding, specific DNA binding and phosphorylation of progesterone receptor (PR) from T47D cells after treatment of cells with progestins (progesterone, R5020) and antiprogestins (RU486, ZK98299, Org 31806 and Org 31710). Treatment of the cells with R5020 or PR antagonists, with the exception of ZK98299, resulted in a quantitative upshift of PR-A and PR-B indicative of ligand/DNA-induced phosphorylation of PR. Treatment of cells with RU486, Org 31710 or Org 31806, but not R5020 or ZK98299 resulted in detectable PR-progesterone response element complexes (PR-PREc) as assessed by gel mobility shift assay. Although treatment of cells with ZK98299, a type I PR antagonist, did not induce phosphorylation, the antiprogestins, Org 31806 and Org 31710, in a manner identical to RU486, did. Our data suggest that Org 31806 and Org 31710 affect propertie s of PR from T47D cells that are similar to RU486. (Mol Cell Biochem 175: 205–212, 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号