首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of 17 variants of the satellite RNA of cucumber mosaic virus (CMV-satRNA) isolated from field-infected tomato plants in the springs of 1989, 1990, and 1991 was determined. The sequence of each of the 17 satRNAs was unique and was between 334 and 340 nucleotides in length; 57 positions were polymorphic. There was much genetic divergence, ranging from 0.006 to 0.141 nucleotide substitutions per site for pairwise comparisons, and averaging 0.074 for any pair. When the polymorphic positions were analyzed relative to a secondary structure model proposed for CMV-satRNAs, it was found that there were significantly different numbers of changes in base-paired and non–base-paired positions, and that mutations that did not disrupt base pairing were preferred at the putatively paired sites. This supports the concept that the need to maintain a functional structure may limit genetic divergence of CMV-satRNA. Phylogenetic analyses showed that the 17 CMV-satRNA variants clustered into two subgroups, I and II, and evolutionary lines proceeding by the sequential accumulation of mutations were apparent. Three satRNA variants were outliers for these two phylogenetic groups. They were shown to be recombinants of subgroup I and II satRNAs by calculating phylogenies for different molecular regions and by using Sawyer's test for gene conversion. At least two recombination events were required to produce these three recombinant satRNAs. Thus, recombinants were found to be frequent (∼17%) in natural populations of CMV-satRNA, and recombination may make an important contribution to the generation of new variants. To our knowledge this is the first report of data allowing the frequency of recombinant isolates in natural populations of an RNA replicon to be estimated. Received: 14 May 1996 / Accepted: 17 July 1996  相似文献   

2.
The genetic structure of populations of cucumber mosaic virus (CMV) satellite RNA (satRNA) and its evolution were analyzed during the course of a CMV epidemic in tomatoes in eastern Spain. A total of 62 variants of CMV-satRNA from epidemic episodes in 1989, 1990, and 1991 were characterized by RNase protection assay (RPA); RPA patterns defined 60 haplotypes in the CMV-satRNA population. RPA of nine CMV-satRNAs of known sequences showed that numbers of nucleotide substitutions per site (dij) between different satRNAs can be estimated from RPA data. Thus, dij were estimated for any possible pair of field CMV-satRNA types, and nucleotide diversities within and between yearly subpopulations were calculated. Also, phylogenetic relationships among CMV-satRNAs were derived from RPA data (by parsimony) or from dij (by neighbor joining). From these analyses, a model for the evolution of CMV-satRNAs in field epidemics can be built. High genetic variability of CMV-satRNA results in very heterogeneous populations, even compared with those of other RNA genomes. The high diversity of the population is maintained through time by the continuous generation of variants by mutation, counterbalanced by negative selection; this results in a certain replacement of haplotypes from year to year. The sequential accumulation of mutations in CMV-satRNA leads to fast genetic divergence to reach what appears to be an upper permitted threshold.  相似文献   

3.
Patterns of molecular evolution in birds have long been considered anomalous. Compared with other vertebrates, birds have reduced levels of genetic divergence between groups of similar taxonomic ranks for a variety of nuclear and mitochondrial markers. This observation led to the avian constraint hypothesis, which identifies increased functional constraint on avian proteins as the cause for the reduction in genetic divergence. Subsequent investigations provided additional support for the avian constraint hypothesis when rates of molecular evolution were found to be slower in birds than in mammals in a variety of independent calibrations. It is possible to test the avian constraint hypothesis as an explanation for this avian slowdown by comparing DNA sequence data from protein-coding regions in birds and homologous regions in mammals. The increased selective constraints should lead to a reduction in the proportion of amino acid replacement substitutions. To test for such a decrease, we calculated the numbers of amino acid replacement substitutions per replacement site (dN) and silent substitutions per silent site (dS) for the complete mitochondrial cytochrome b gene using 38 avian and 43 mammalian comparisons that were phylogenetically independent. We find that dN/dS is significantly smaller in birds than in mammals. This difference cannot be explained by differences in codon bias affecting dS values. We suggest that the avian slowdown can be explained, at least in part, by a decreased tolerance for amino acid substitutions in avian species relative to mammalian species.  相似文献   

4.
L L Shu  W J Bean    R G Webster 《Journal of virology》1993,67(5):2723-2729
This study examined the evolution and variation of the human influenza virus nucleoprotein gene from the earliest isolates to the present. Phylogenetic reconstruction of the most parsimonious evolutionary path connecting 49 nucleoprotein sequences yielded a single lineage. The average calculated rate of mutation was 3.6 nucleotide substitutions per year (2.3 x 10(-3) substitutions per site per year). Thirty-two percent of these mutations resulted in amino acid substitutions, and the remainder were silent mutations. Analysis of virus isolates from China and elsewhere showed no significant differences in their rate of evolution, genetic diversity, or mean survival time. The nearly constant rate of change was maintained through the two antigenic shifts, and there were no obvious changes in the number or types of mutations associated with the changes in the surface proteins. A detailed comparison of the changes that have occurred on the main evolutionary path with those that have occurred on the side branches of the phylogenetic tree was made. This showed that while 35% of the mutations on the side branches resulted in amino acid changes, only 21% of those on the main path affected the protein sequence. These results suggest that although the rate of change of the human influenza virus nucleoprotein is much higher than that previously described for avian influenza viruses, there are measurable constraints on the evolution of the surviving virus lineage. Comparison of the nucleoproteins of virus isolates adapted to chicken embryos with the nucleoproteins of those grown only in MDCK cells revealed no consistent differences between the virus pairs. Thus, although the nucleoprotein is known to be critical for host specificity, its adaptation to growth in eggs apparently involves no immediate selective pressures, such as are found with hemagglutinin.  相似文献   

5.
The intense selection pressure exerted by virus-specific cytotoxic T lymphocytes (CTL) on replicating human immunodeficiency virus and simian immunodeficiency virus results in the accumulation of CTL epitope mutations. It has been assumed that fitness costs can limit the evolution of CTL epitope mutations. However, only a limited number of studies have carefully examined this possibility. To explore the fitness costs associated with viral escape from p11C, C-M-specific CTL, we constructed a panel of viruses encoding point mutations at each position of the entire p11C, C-M epitope. Amino acid substitutions at positions 3, 4, 5, 6, 7, and 9 of the epitope significantly impaired virus replication by altering virus production and Gag protein expression as well as by destabilizing mature cores. Amino acid substitutions at position 2 of the epitope were tolerated but required reversion or additional compensatory mutations to generate replication-competent viruses. Finally, while amino acid substitutions at positions 1 and 8 of the p11C, C-M epitope were functionally tolerated, these substitutions were recognized by p11C, C-M-specific CTL and therefore provided no selection advantage for the virus. Together, these data suggest that limited sequence variation is tolerated by the region of the capsid encoding the p11C, C-M epitope and therefore that only a very limited number of mutations can allow successful viral escape from the p11C, C-M-specific CTL response.  相似文献   

6.
Evidence from diverse studies, such as protein design experiments and analysis of the emergence of drug resistance in human immunodeficiency virus 1 (HIV-1), indicates that protein function can be diminished or altered by mutations at positions distant from the classic 'functional' site. Furthermore, results from correlation analysis of the ligand-binding domain of nuclear receptors suggest that mutation events at positions distributed throughout a protein domain may be involved in functional diversification during the evolution of homologous domain families. This review explores potential applications for a protein design procedure based on correlated substitutions.  相似文献   

7.
Routine electrophoretic surveys for genetic variation in natural populations depend primarily upon detecting differences in the net charge carried by a protein. We have calculated the proportion of base substitutions which would yield an electrophoretically detectable mutant protein, and the relative mutation rates among different chare classes, under a variety of simplifying assumptions. These calculations indicate that: (i) only 25 per cent of all single base mutations would lead to a charge change on a protein molecule. (ii) five distinct classes of electrophoretic variants can be generated from a specified protein by single base substitutions. (iii) the relative mutation rates differ markedly among the different charge classes which can be generated by single base substitutions. The estimates of the proportion of electrophoretically detectable mutant proteins and relative mutation rates among charge classes were relatively robust to changes in assumptions concerned with the kind and site of base substitutions and the amino acid composition of the protein.  相似文献   

8.
We have constructed all single base substitutions in almost all of the highly conserved residues of the Tetrahymena self-splicing intron. Mutation of highly conserved residues almost invariably leads to loss of enzymatic activity. In many cases, activity could be regained by making additional mutations that restored predicted base-pairings; these second site suppressors in general confirm the secondary structure derived from phylogenetic data. At several positions, our suppression data can be most readily explained by assuming non-Watson-Crick base-pairings. In addition to the requirements imposed by the secondary structure, the sequence of the intron is constrained by "negative interactions", the exclusion of particular nucleotide sequences that would form undesirable secondary structures. A comparison of genetic and phylogenetic data suggests sites that may be involved in tertiary structural interactions.  相似文献   

9.
10.
Antigenic and genetic variations have been analyzed in eight consecutive isolates recovered from a child with severe combined immunodeficiency syndrome persistently infected with naturally acquired type A (H1N1) influenza virus over a 10-month period. Hemagglutination inhibition reactions and T1 oligonucleotide fingerprinting demonstrated that these viruses were related to strains causing outbreaks in the United States at that time (1983 to 1984) but that antigenic and genetic differences between consecutive isolates could be detected. This variation between isolates was examined further by sequencing the RNAs encoding the HA1 region of the hemagglutinin (HA) and the nucleoprotein (NP) in five of the consecutive isolates. Multiple point mutations were detected in both genes, and a deletion of one amino acid was detected in the HA. Depending on the isolates compared, 5.8 x 10(-3) to 17 x 10(-3) substitutions per nucleotide site per year were detected in the RNAs encoding the HA1, and 3.5 x 10(-3) to 24 x 10(-3) substitutions per nucleotide site per year were detected in the NP gene. Fifty-four percent of the base changes in the HA1 and 73% in the NP led to amino acid substitutions. A progressive accumulation of mutations over time was not observed, suggesting that the genetic diversity of these viruses may best be interpreted as the result of shifts in the population equilibrium (quasi-species) of replicating variant genomes.  相似文献   

11.
Summary Selective constraints on DNA sequence change were incorporated into a model of DNA divergence by restricting substitutions to a subset of nucleotide positions. A simple model showed that both mutation rate and the fraction of nucleotide positions free to vary are strong determinants of DNA divergence over time.When divergence between two species approaches the fraction of positions free to vary, standard methods that correct for multiple mutations yield severe underestimates of the number of substitutions per site. A modified method appropriate for use with DNA sequence, restriction site, or thermal renaturation data is derived taking this fraction into account. The model also showed that the ratio of divergence in two gene classes (e.g., nuclear and mitochondrial) may vary widely over time even if the ratio of mutation rates remains constant.DNA sequence divergence data are used increasingly to detect differences in rates of molecular evolution. Often, variation in divergence rate is assumed to represent variation in mutation rate. The present model suggests that differing divergence rates among comparisons (either among gene classes or taxa) should be interpreted cautiously. Differences in the fraction of nucleotide positions free to vary can serve as an important alternative hypothesis to explain differences in DNA divergence rates.  相似文献   

12.
Nucleotide substitution error frequencies were determined for several specific guanine base positions in the genomes of cloned vesicular stomatitis virus populations. Predetermined sites were examined in coding regions for the N, M, and L proteins and at a site in the genome 5'-end regulatory region. Misincorporation frequencies were estimated to be on the order of 10(-3) to 10(-4) at all positions analyzed. Isolates taken from virus populations after disruption of equilibrium conditions displayed replicase fidelity similar to that of cloned wild-type vesicular stomatitis virus. These mutation frequencies apply to all virus genomes present, including viruses rendered nonviable by lethal mutations. At one selected site in the N gene, two of three G----N base substitutions generated lethal nonsense mutations, yet their frequency was also very high. Biological implications for rapid virus evolution are discussed.  相似文献   

13.
The number of nucleotide (nt) substitutions found in the VP1 gene (encoding viral capsid protein) between any two of 16 closely related isolates of foot-and-mouth disease virus (FMDV) has been quantified as a function of the time interval between isolations [Villaverde et al., J. Mol. Biol. 204 (1988) 771-776]. One of them (isolate C-S12) includes some replacements found in isolates that preceded it and other replacements found in later isolates. The study has revealed alternating periods of rapid evolution and of relative genetic stability of VP1. During a defined period of acute disease, the rate of fixation of replacements at the VP1 coding segment was 6 x 10(-3) substitutions per nt per year. Only small differences in the rate of evolution were observed between subsegments within the VP1 gene. The observation of a relatively constant rate of evolution during a disease episode was unexpected. We propose that such constancy may be a consequence of random sampling of mutants from the FMDV quasispecies, followed by their amplification in susceptible hosts (to generate a new quasispecies). Successive sampling and amplification events may result in a steady accumulation of mutations.  相似文献   

14.
During protein evolution the amino acid substitutions accumulate with time. However, the effect of accumulation of the amino acid substitutions to structural changes has not been estimated well. We will propose that the discordance of amino acid substitution on the HA protein of influenza A virus is useful for the assessment of structural changes during evolution. Discordance value can be obtained from the experimental data of tolerance or intolerance by introducing site directed mutagenesis at the homologous positions of two HA proteins holding the same amino acid residues. The value of discordance correlated to the number of amino acid differences among proteins. In the H3HA discordance rate was calculated to be 0.45% per one amino acid change. Furthermore, discordance of amino acid substitutions suggests that tolerable amino acid substitutions in different order have a probability of promoting irreversible divergence of the HA protein to different subtypes.  相似文献   

15.
16.
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) interacts with receptors on the target cell and mediates virus entry by fusing the viral and cell membranes. To maintain the viral infectivity, amino acids that interact with receptors are expected to be more conserved than the other sites on the protein surface. In contrast to the functional constraint of amino acids for the receptor binding, some amino acid changes in this protein may produce antigenic variations that enable the virus to escape from recognition of the host immune system. Therefore, both positive selection (higher fitness) and negative selection (lower fitness) against amino acid changes are taking place during evolution of surface proteins of parasites To elucidate the evolutionary mechanisms of the whole HIV-1 gp120 envelope glycoprotein at the single site level, we collected and analyzed all available sequence data for the protein. By analyzing 186 sequences of the HIV-1 gp120 (subtype B), we reevaluated amino acid variability at the single site level, and estimated the numbers of synonymous and nonsynonymous substitutions at each codon position to detect positive and negative selection. We identified 33 amino acid positions which may be under positive selection. Some of these positions may form discontinuous epitopes. We also analyzed amino acid sequences to find amino acid positions responsible for usage of the second receptor. We found that, in addition to the V3 loop, amino acid variation at residue 440 in C4 region is clearly linked with the usage of CXCR 4.  相似文献   

17.
RNA viruses and retroviruses fix substitutions approximately 1 million-fold faster than their hosts. This diversification could represent an inevitable drift under purifying selection, the majority of substitutions being phenotypically neutral. The alternative is to suppose that most fixed mutations are beneficial to the virus, allowing it to keep ahead of the host and/or host population. Here, relative sequence diversification of different proteins encoded by viral genomes is found to be linear. The examples encompass a wide variety of retroviruses and RNA viruses. The smoothness of relative divergence spans quasispeciation following clonal infection, to variation among different isolates of the same virus, to viruses from different species or those associated with different diseases, indicating that the majority of fixed mutations likely reflects drift. This held for both mammalian and plant viruses, indicating that adaptive immunity doesn't necessarily shape the relative accumulation of amino acid substitutions. When compared to their hosts RNA viruses evolution appears conservative. Received: 16 November 1999 / Accepted: 10 March 2000  相似文献   

18.
We examined rates of DNA sequence evolution in 12 populations of Escherichia coli propagated in a glucose minimal medium for 20,000 generations. Previous work saw mutations mediated by mobile elements in these populations, but the extent of other genomic changes was not investigated. Four of the populations evolved defects in DNA repair and became mutators. Some 500 bp was sequenced in each of 36 genes for 50 clones, including 2 ancestral variants, 2 clones from each population at generation 10,000, and 2 from each at generation 20,000. Ten mutations were found in total, all point mutations including mostly synonymous substitutions and nonsynonymous polymorphisms; all 10 were found in mutator populations. We compared the observed sequence evolution to predictions based on different scenarios. The number of synonymous substitutions is lower than predicted from measured mutation rates in E. coli, but the number is higher than rates based on comparing E. coli and Salmonella genomes. Extrapolating to the entire genome, these data predict about 250 synonymous substitutions on average per mutator population, but only about 3 synonymous substitutions per nonmutator population, during 20,000 generations. These data illustrate the challenge of finding sequence variation among bacterial isolates that share such a recent ancestor. However, this limited variation also provides a useful baseline for research aimed at finding the beneficial substitutions in these populations.  相似文献   

19.
The addition of ribavirin to alpha interferon therapy significantly increases response rates for patients with chronic hepatitis C virus (HCV) infection, but ribavirin's antiviral mechanisms are unknown. Ribavirin has been suggested to have mutagenic potential in vitro that would lead to "error catastrophe," i.e., the generation of nonviable viral quasispecies due to the increment in the number of mutant genomes, which prevents the transmission of meaningful genetic information. We used extensive sequence-based analysis of two independent genomic regions in order to test in vivo the hypothesis that ribavirin administration accelerates the accumulation of mutations in the viral genome and that this acceleration occurs only when HCV replication is profoundly inhibited by coadministered alpha interferon. The rate of variation of the consensus sequence, the frequency of mutation, the error generation rate, and the between-sample genetic distance were measured for patients receiving ribavirin monotherapy, a combination of alpha interferon three times per week plus ribavirin, or a combination of alpha interferon daily plus ribavirin. Ribavirin monotherapy did not increase the rate of variation of the consensus sequence, the mutation frequency, the error generation rate, or the between-sample genetic distance. The accumulation of nucleotide substitutions did not accelerate, relative to the pretreatment period, during combination therapy with ribavirin and alpha interferon, even when viral replication was profoundly inhibited by alpha interferon. This study strongly undermines the hypothesis whereby ribavirin acts as an HCV mutagen in vivo.  相似文献   

20.
The complete nucleotide sequence of the visna virus 1514 genome was determined. Our sequence confirms the relationship of visna virus and other lentiviruses to human immunodeficiency virus (HIV) both at the level of sequence homology and of genomic organization. Sequence homology is shown to extend to the transmembrane proteins of lentivirus env genes; this homology is strongest in the extracellular domain, suggesting that close structural and functional similarities may also exist among these envelope proteins. Comparison of our data with the sequence of visna virus LV1-1, an antigenic variant derived from strain 1514, demonstrates that the rate of divergence has been about 1.7 x 10(-3) substitutions per nucleotide per year in vivo. This rate is orders of magnitude higher than that for most DNA genomes, but agrees well with estimates of the rate for HIV. A statistically significant cluster of mutations in the env gene appears to represent a hypervariable site and may correspond to the epitope responsible for the antigenic differences between 1514 and LV1-1. Analysis of the potential RNA folding pattern of the visna virus env gene shows that this hypervariable site falls within a region with little potential for intramolecular base pairing. This correlation of hypervariability with lack of RNA secondary structure is strengthened by the fact that it also holds for a hypervariable site in the env gene of HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号