首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The impact of clear-cutting, scarification, and prescribed burning on forest soil microbial community structure was assessed using sole-carbon-source utilization (SCSU). Organic and mineral soil samples were collected on two dates from Pinus banksiana plots that had been clear-cut, clear-cut followed by prescribed burning, clear-cut followed by scarification, or had not been harvested. Microorganisms were extracted from the soil samples and used to inoculate Gram-negative Biolog? plates. Patterns of substrate metabolism were used to calculate Shannon, Simpson, McIntosh, and related evenness indices. Principal component analysis (PCA) resolved organic and mineral soils. Organic soil exhibited higher metabolic diversity than mineral soil. Scarified plots showed lower diversity on one date, when diversity indices were calculated using all carbon sources, and on both dates when calculated using carboxylic acids, only. The results suggest that SCSU may be used to assess the impact of forestry practices on microbial diversity and community structure by using a subset of carbon substrates. Received: 30 July 1996; Accepted 18 November 1996  相似文献   

2.
Piirainen  Sirpa  Finér  Leena  Mannerkoski  Hannu  Starr  Michael 《Plant and Soil》2002,239(2):301-311
Effects of clear-cutting on the dissolved fluxes of organic C (DOC), organic N (DON), NO3 and NH4 + through surface soil horizons were studied in a Norway spruce dominated mixed boreal forest in eastern Finland. Bulk deposition, total throughfall and soil water from below the organic (including understorey vegetation and, after clear-cutting, also logging residues), eluvial and illuvial horizons were sampled weekly from 1993 to 1999. Clear-cutting was carried out in September 1996. The removal of the tree canopy decreased the deposition of DOC and DON to the forest floor and increased that of NH4 + and NO3 but did not affect the deposition of total N (DTN, <3 kg ha–1 a–1). The leaching of DOC and DON from the organic horizon increased over twofold after clear-cutting (fluxes were on an average 168 kg C and 3.3 kg N ha–1 a–1), but the increased outputs were effectively retained in the surface mineral soil horizons. Inorganic N deposition was mainly retained by the logging residues and organic horizon indicating microbial immobilization. Increased NO3 formation reflected as elevated concentrations in the percolate from below the mineral soil horizons were observed especially in the third year after clear-cutting. However, the changes were small and the increased leaching of DTN from below the illuvial horizon remained small (<0.4 kg ha–1 a–1) and mainly DON. Effects of clear-cutting on the transport of C and N to surface waters will probably be negligible.  相似文献   

3.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

4.
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.  相似文献   

5.
长期不同施肥制度下几种土壤微生物学特征变化   总被引:20,自引:0,他引:20       下载免费PDF全文
 为阐明土壤微生物对土壤健康的生物指示功能, 以国家褐潮土肥力与肥料效益监测基地的长期肥料试验为平台, 应用BIOLOG ECO微平板培养法与常规分析法研究了长期施肥15年后不同施肥制度对土壤微生物生物量、活性、群落代谢功能多样性及土壤肥力的影响。研究结果表明, 与对照(CK)相比, 长期化肥与有机肥配施土壤中土壤有机质(SOM)、全氮(STN)、全磷(STP)含量升高, 土壤C/N与pH值降低, 土壤微生物量碳(Soil microbial biomass carbon, SMBC)、生物微生物量氮(Soil microbial biomass nitrogen, SMBN)、微生物商(qMB)及脲酶(Urease)活性升高, BIOLOG ECO微平板平均颜色变化率(Average well color development, AWCD)、土壤微生物代谢功能多样性指数变化不明显。和长期单施化肥处理(NPK)相比, 长期化肥与有机肥配施处理中上述几种微生物学特征(SMBC、SMBN、qMB、Urease及AWCD、代谢功能多样性指数)均呈极显著增加。NPK处理与CK相比虽然SOM、STN、STP含量稍有升高, 土壤C/N与pH值降低, SMBC、SMBN、qMB及Urease活性增高, 但是AWCD、土壤微生物代谢功能多样性指数却显著下降。过氧化氢酶活性(Catalase)在各处理土壤中的差异不显著。土壤微生物碳源利用的主成分分析表明, 长期不同施肥各处理在土壤微生物利用碳源的种类和能力上有差异。此试验说明, 土壤微生物受农业管理措施和多种环境因素的影响, 土壤微生物学特征可作为土壤质量的敏感指标, 为提高作物产量、增强肥力提供理论参考。  相似文献   

6.
土壤微生物多样性影响因素及研究方法的现状与展望   总被引:37,自引:0,他引:37  
周桔  雷霆 《生物多样性》2007,15(3):306-311
土壤微生物是土壤生态系统的重要组成部分, 在土壤有机物质分解和养分释放、能量转移等生物地化循环中起着重要作用。随着人们对生物多样性重要性认识的不断深入及研究方法的不断改进, 土壤微生物多样性, 尤其是功能多样性的研究工作逐渐受到生态学家的重视。本文从土壤微生物多样性的影响因素以及研究方法等方面阐述了目前国内外土壤微生物多样性的研究现状, 并对其未来研究方向进行了展望。  相似文献   

7.
Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical–chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha‐ and Gamma‐Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta‐Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near‐surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw.  相似文献   

8.
Fungal and actinobacterial communities were analyzed together with soil chemistry and enzyme activities in order to profile the microbial diversity associated with the economically important mushroom Tricholoma matsutake. Samples of mycelium-soil aggregation (shiro) were collected from three experimental sites where sporocarps naturally formed. PCR was used to confirm the presence and absence of matsutake in soil samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing were used to identify fungi and actinobacteria in the mineral and organic soil layers separately. Soil enzyme activities and hemicellulotic carbohydrates were analyzed in a productive experimental site. Soil chemistry was investigated in both organic and mineral soil layers at all three experimental sites. Matsutake dominated in the shiro but also coexisted with a high diversity of fungi and actinobacteria. Tomentollopsis sp. in the organic layer above the shiro and Piloderma sp. in the shiro correlated positively with the presence of T. matsutake in all experimental sites. A Thermomonosporaceae bacterium and Nocardia sp. correlated positively with the presence of T. matsutake, and Streptomyces sp. was a common cohabitant in the shiro, although these operational taxonomic units (OTUs) did not occur at all sites. Significantly higher enzyme activity levels were detected in shiro soil. These enzymes are involved in the mobilization of carbon from organic matter decomposition. Matsutake was not associated with a particular soil chemistry compared to that of nearby sites where the fungus does not occur. The presence of a significant hemicellulose pool and the enzymes to degrade it indicates the potential for obtaining carbon from the soil rather than tree roots.  相似文献   

9.
Abstract In this study, two different agricultural soils were investigated: one organic soil and one sandy soil, from Stend (south of Bergen), Norway. The sandy soil was a field frequently tilled and subjected to crop rotations. The organic soil was permanent grazing land, infrequently tilled. Our objective was to compare the diversity of the cultivable bacteria with the diversity of the total bacterial population in soil. About 200 bacteria, randomly isolated by standard procedures, were investigated. The diversity of the cultivable bacteria was described at phenotypic, phylogenetic, and genetic levels by applying phenotypical testing (Biolog) and molecular methods, such as amplified rDNA restriction analysis (ARDRA); hybridization to oligonucleotide probes; and REP-PCR. The total bacterial diversity was determined by reassociation analysis of DNA isolated from the bacterial fraction of environmental samples, combined with ARDRA and DGGE analysis. The relationship between the diversity of cultivated bacteria and the total bacteria was elucidated. Organic soil exhibited a higher diversity for all analyses performed than the sandy soil. Analysis of cultivable bacteria resulted in different resolution levels and revealed a high biodiversity within the population of cultured isolates. The difference between the two agricultural soils was significantly higher when the total bacterial population was analyzed than when the cultivable population was. Thus, analysis of microbial diversity must ultimately embrace the entire microbial community DNA, rather than DNA from cultivable bacteria.  相似文献   

10.
土壤管理措施及环境因素对土壤微生物多样性影响研究进展   总被引:43,自引:1,他引:43  
本文综述了土壤管理措施及环境因素对土壤微生物多样性影响的研究进展,并介绍了土壤微生物多样性的研究方法,土壤微生物多样性包括微生物物种多样性、遗传多样性和生态多样性。传统上,土壤微生物群落的分析依赖于培养技术,但使用该技术只能培养和分离出一部分土壤微生物群落。现在国际上普遍使用Biolog分析、磷脂脂肪酸(PLFA)分析和核酸分析等多种现代技术研究和表征土壤微生物多样性。土壤微生物多样性受土壤管理措施和多种环境因素的影响。农药可能使土壤微生物多样性减少或改变其结构和功能;施有机肥有利于维持土壤微生物的多样性及活性;但在施用无机肥的影响上目前的报道有矛盾之处。农业土壤减少耕作可能增加微生物多样性和生物量;轮作可能比单一栽培耕作更有利于维持土壤微生物的多样性及活性。土壤微生物多样性也受土壤有机质、植被、季节变化等因素的影响,且通常遭受干旱、过度放牧、营养缺乏等的胁迫作用。  相似文献   

11.
Low-input agricultural systems aim at reducing the use of synthetic fertilizers and pesticides in order to improve sustainable production and ecosystem health. Despite the integral role of the soil microbiome in agricultural production, we still have a limited understanding of the complex response of microbial diversity to organic and conventional farming. Here we report on the structural response of the soil microbiome to more than two decades of different agricultural management in a long-term field experiment using a high-throughput pyrosequencing approach of bacterial and fungal ribosomal markers. Organic farming increased richness, decreased evenness, reduced dispersion and shifted the structure of the soil microbiota when compared with conventionally managed soils under exclusively mineral fertilization. This effect was largely attributed to the use and quality of organic fertilizers, as differences became smaller when conventionally managed soils under an integrated fertilization scheme were examined. The impact of the plant protection regime, characterized by moderate and targeted application of pesticides, was of subordinate importance. Systems not receiving manure harboured a dispersed and functionally versatile community characterized by presumably oligotrophic organisms adapted to nutrient-limited environments. Systems receiving organic fertilizer were characterized by specific microbial guilds known to be involved in degradation of complex organic compounds such as manure and compost. The throughput and resolution of the sequencing approach permitted to detect specific structural shifts at the level of individual microbial taxa that harbours a novel potential for managing the soil environment by means of promoting beneficial and suppressing detrimental organisms.  相似文献   

12.
宁南山区典型植物根际与非根际土壤微生物功能多样性   总被引:8,自引:0,他引:8  
安韶山  李国辉  陈利顶 《生态学报》2011,31(18):5225-5234
选择宁南山区9种典型植物的根际与非根际土壤为研究对象,采用Biolog方法对土壤微生物功能多样性进行了研究。结果表明:9种不同植物根际土壤与非根际土壤的微生物活性(AWCD)、微生物多样性指数和微生物均匀度指数均存在明显差异;除冰草外,其他各种植物的根际土壤的微生物活性AWCD、微生物多样性指数和微生物均匀度指数均比非根际土壤的高;9种典型植物根际土壤微生物主要碳源利用类型是羧酸类和氨基酸类,非根际土壤微生物主要碳源利用类型是羧酸类、胺类、氨基酸类;微生物活性、微生物多样性指数和微生物均匀度指数两两之间均达到了极显著相关,与土壤化学性质各指标之间均未达到显著相关水平。  相似文献   

13.
凋落物对土壤有机碳与微生物功能多样性的影响   总被引:2,自引:0,他引:2  
森林凋落物是影响土壤微生物群落和有机碳含量的重要因素,但其作用的程度和机制尚不清楚,研究该问题对于分析森林生态系统碳循环和资源管理具有重要意义。研究凋落物去除与添加处理下土壤有机碳含量与土壤微生物对碳源利用的差异,明确凋落物去除与添加对土壤微生物群落代谢功能及其多样性的影响,探究不同处理下SOC含量变化的土壤微生物群落代谢机理。选取承德市雾灵山1405-1435 m海拔范围内核桃楸-蒙古栎混交林的表层土壤,采用室内培养结合Biolog-ECO方法,测定了培养第21天的土壤有机碳(soil organic carbon,SOC)含量及微生物群落的AWCD值、Shannon-Wiener多样性指数、Simpson优势度指数、McIntosh均匀度指数、Pielou丰富度指数,分析培养期内凋落物的不同处理下SOC含量与微生物功能多样性的变化特征。结果表明:1)不同凋落物处理对SOC含量与土壤微生物群落多样性具有显著影响(P<0.05),DL > HL > NL > CK;2)不同凋落物处理下土壤微生物群落代谢活性和土壤微生物对碳源的利用程度具有显著差异(P<0.05),碳水化合物类和氨基酸类是土壤微生物的主要碳源;3)不同处理的SOC含量与土壤微生物多样性具有正相关关系。双倍凋落物添加在短期内对土壤微生物多样性影响难以达到显著水平且在一定程度上对土壤微生物的代谢活性具有抑制作用,土壤微生物群落功能多样性对SOC含量具有重要影响。  相似文献   

14.
【目的】探究青海湖岸带土壤与沉积物的地化特征与细菌群落对水位扩张的响应。【方法】从岸上至岸下沿垂直青海湖岸带方向,采集距离湖面不同高度土壤(土壤:S1、S2)、岸边不同水深表层沉积物(过渡区:E0、E6、E17)及湖心表层沉积物(沉积物:D1、D2)样品,土壤与沉积物水深(土壤水深表示为负数)从小到大的变化表征岸边土壤被淹水转变为沉积物的过程。采用地球化学分析和16SrRNA基因高通量测序技术,探究岸带土壤与沉积物样品中的地化特征与微生物群落构成。【结果】青海湖水位上升导致的生境转变对岸带土壤与沉积物的理化性质、营养水平、有机碳类型等地化特征产生显著影响。具体表现为,随着水位升高,岸带土壤与沉积物的pH、矿物结合态有机碳含量显著升高,而碳氮比值、可溶性有机碳(dissolved organic carbon,DOC)、颗粒态有机碳含量显著下降。随着水位上升,青海湖岸带被淹没土壤的细菌群落多样性下降,且群落结构发生明显变化。这种变化与环境因子变化密切相关,具体表现为,细菌群落物种丰富度指数和香农多样性指数随着水位上升呈下降趋势;活性金属结合态有机碳含量与细菌群落多样性的变化密切相关;理化...  相似文献   

15.
Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining.  相似文献   

16.
枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响   总被引:4,自引:0,他引:4  
【背景】微生物肥料已广泛应用于我国有机作物的种植,其对有机种植土壤微生态的影响尚需科学评测。【目的】高通量测序技术可用于精确分析土壤微生物群落,从细菌、真菌群落结构和多样性的角度阐释枯草芽胞杆菌菌肥对有机农田根区土壤微生物群落的影响。【方法】在有机农田轮作种植条件下,施用枯草芽胞杆菌菌肥后提取冬瓜根区土壤基因组DNA,通过PCR扩增建立文库,利用IlluminaMiSeq高通量测序技术,并结合相关生物信息学方法分析土壤细菌16SrRNA基因V3-V4区和真菌ITS1区的多样性指数及群落结构;测定根区土壤化学性质及酶活性,分析有机冬瓜果实品质,并作相关分析。【结果】从6个有机冬瓜根区土壤样本中获得14199个细菌操作分类单元(OTU)和3378个真菌OTU,细菌和真菌文库测序覆盖率分别在98%、99%以上。枯草芽胞杆菌菌肥会在一定程度上提高土壤细菌种群多样性而降低真菌种群多样性,丰富了细菌群落结构,但显著降低了真菌群落丰富度(P0.05);并减少了根区土壤特有细菌和真菌物种。变形菌门、厚壁菌门和放线菌门是优势细菌,子囊菌门是优势真菌;枯草芽胞杆菌菌肥会提高绿弯菌门和子囊菌门的相对丰度,比例分别为46.23%、10.01%;降低变形菌门和担子菌门的相对丰度,比例分别为11.14%、74.72%。枯草芽胞杆菌菌肥显著降低了土壤pH,显著提高了有机冬瓜果实总氨基酸、可溶性固形物等营养成分含量(P0.05)。【结论】施用枯草芽胞杆菌菌肥改变有机冬瓜根区土壤细菌和真菌的丰富度和多样性,降低了土壤pH,提高了有机冬瓜果实品质。  相似文献   

17.
德兴铜矿尾矿重金属污染对土壤中微生物多样性的影响   总被引:12,自引:2,他引:10  
【目的】为更好地了解重金属污染与微生物多样性之间的相互作用关系,以江西德兴铜矿4#尾砂库为研究对象,采集野外实地样品共16件进行分析(包括尾砂样品以及周围农田和菜地土壤样品)。【方法】一方面对样品中可培养异养细菌进行平板计数,一方面采用变性梯度凝胶电泳(Denaturing gradient gel electrophoresis,DGGE)对样品中可培养和不可培养微生物分子生态多样性进行研究;同时采用PCA(Principle component analysis)方法分析样品理化性质、重金属及主要元素与可培养细菌数量及微生物多样性之间的相互关系。【结果】元素分析结果表明该尾矿区样品受到不同程度重金属Cu、Cd、Zn、Ni、Pb和Cr的污染;可培养异养细菌在尾砂样品中数量最少,在菜地和农田土壤样品中有明显增加;多样性指数(Shannon-Weaver index H)计算结果发现H最大值出现在距离尾矿中等距离、重金属浓度在中等程度的样品中。PCA分析结果表明可培养异养菌数量与理化性质如有机碳、有机质、含水率等相关性较大,重金属影响不明显;而多样性指数H除与上述理化性质相关性较大外,还受到重金属Ag、Zn、As、Pb、Ni、Cr等的影响,而在样品中含量普遍比较高的重金属如Cu、Cd等并不成为影响微生物多样性的主要因素。【结论】从这些长期受重金属污染的野外实地样品来看,以上结果说明不同重金属浓度对微生物多样性的影响可能并不是实验室研究的简单的线性关系。  相似文献   

18.
The effects of mineral fertilizer (NPK) and organic manure on phospholipid fatty acid profiles and microbial functional diversity were investigated in a long-term (21-year) fertilizer experiment. The experiment included nine treatments: organic manure (OM), organic manure plus fertilizer NPK (OM + NPK), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), fertilizer N (N), fertilizer P (P), fertilizer K (K), and the control (CK, without fertilization). The original soil was extremely eroded, characterized by low pH and deficiencies of nutrients, particularly N and P. The application of OM and OM + NPK greatly increased crop yields, soil pH, organic C, total N, P and K, available N, P and K content. Crop yields, soil pH, organic C, total N and available N were also clearly increased by the application of mineral NPK fertilizer. The amounts of total PLFAs, bacterial, Gram-negative and actinobacterial PLFAs were highest in the OM + NPK treatment, followed by the OM treatment, whilst least in the N treatment. The amounts of Gram-positive and anaerobic PLFAs were highest in the OM treatment whilst least in the P treatment and the control, respectively. The amounts of aerobic and fungal PLFAs were highest in the NPK treatment whilst least in the N and P treatment, respectively. The average well color development (AWCD) was significantly increased by the application of OM and OM + NPK, and the functional diversity indices including Shannon index (H ), Simpson index (D) and McIntosh index (U) were also significantly increased by the application of OM and OM + NPK. Principal component analysis (PCA) of PLFA profiles and C source utilization patterns were used to describe changes in microbial biomass and metabolic fingerprints from nine fertilizer treatments. The PLFA profiles from OM, OM + NPK, NP and NPK were significantly different from that of CK, N, P, K and NK, and C source utilization patterns from OM and OM + NPK were clearly different from organic manure deficient treatments (CK, N, P, K, NP, NK 6 and NPK). Stepwise multiple regression analysis showed that total N, available P and soil pH significantly affected PLFA profiles and microbial functional diversity. Our results could provide a better understanding of the importance of organic manure plus balanced fertilization with N, P and K in promoting the soil microbial biomass, activity and diversity and thus enhancing crop growth and production.  相似文献   

19.
Spatial and resource factors influencing high microbial diversity in soil.   总被引:16,自引:0,他引:16  
To begin defining the key determinants that drive microbial community structure in soil, we examined 29 soil samples from four geographically distinct locations taken from the surface, vadose zone, and saturated subsurface using a small-subunit rRNA-based cloning approach. While microbial communities in low-carbon, saturated, subsurface soils showed dominance, microbial communities in low-carbon surface soils showed remarkably uniform distributions, and all species were equally abundant. Two diversity indices, the reciprocal of Simpson's index (1/D) and the log series index, effectively distinguished between the dominant and uniform diversity patterns. For example, the uniform profiles characteristic of the surface communities had diversity index values that were 2 to 3 orders of magnitude greater than those for the high-dominance, saturated, subsurface communities. In a site richer in organic carbon, microbial communities consistently exhibited the uniform distribution pattern regardless of soil water content and depth. The uniform distribution implies that competition does not shape the structure of these microbial communities. Theoretical studies based on mathematical modeling suggested that spatial isolation could limit competition in surface soils, thereby supporting the high diversity and a uniform community structure. Carbon resource heterogeneity may explain the uniform diversity patterns observed in the high-carbon samples even in the saturated zone. Very high levels of chromium contamination (e.g., >20%) in the high-organic-matter soils did not greatly reduce the diversity. Understanding mechanisms that may control community structure, such as spatial isolation, has important implications for preservation of biodiversity, management of microbial communities for bioremediation, biocontrol of root diseases, and improved soil fertility.  相似文献   

20.
In the present study, soil biomass activity, organic carbon storage, and turnover times were compared in adjacent mediterranean biotopes with different forest vegetation, to analyze the effects of litter diversity and soil management protocols on microbial decomposition rates. Samples of forest soil from four vegetation types were collected at depths of 0-20 and 20-40 cm in the 'Tenuta Presidenziale di Castelporziano' Reserve on the Tyrrhenian coast, near Rome (Italy). The samples were incubated under standard laboratory conditions (-33 kPa water tension, and 30 degrees C), in order to compare the microbial activity independently of temperature and humidity. The CO2-C accumulation curves over a 28-d incubation period showed substantially different kinetics between the samples; in particular, soils with above-ground diversity were characterised by high mineralization activity when compared with those sampled under monospecific vegetation. For all the sites, statistically significant linear correlation was observed between nitrogen concentration and potentially mineralizable carbon (r = 0.97), and microbial biomass carbon (Cmic) to total organic carbon (Corg) ratio and the microbial metabolic quotient q(CO2) (r = -0.96). The q(CO2), indicator of the stability of ecosystems, was enhanced by plant diversity, while the Cmic:Corg ratio was reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号