首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hwu CS  Lu CJ 《Biotechnology letters》2008,30(9):1589-1593
Influences of hydraulic retention time (HRT) on dechlorination of tetrachloroethene (PCE) were investigated in an upflow anaerobic sludge blanket (UASB) reactor inoculated with anaerobic granular sludge non-pre-exposed to chlorinated compounds. PCE was introduced into the reactor at a loading rate of 3 mg/l d. PCE removal increased from 51 +/- 5% to 87 +/- 3% when HRT increased from 1 to 4 d, corresponding to an increase in the PCE biotransformation rate from 10.5 +/- 2.3 to 21.3 +/- 3.7 mumol/d. A higher ethene production rate, 0.9 +/- 0.2 mumol/d, was attained without accumulation of dichloroethenes at the HRT of 4 d. Dehalococcoides-like species were detected in sludge granules by fluorescence in situ hybridization, with signal strength in proportion to the extent of PCE dechlorination.  相似文献   

2.
H2-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates,Aeromonas spp. (7 strains),Pseudomonas spp. (3 strains), andVibrio spp. (5 strains); from anaerobic isolates,Actinomyces spp. (11 strains),Clostridium spp. (7 strains), andPorphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H2 production yield in the batch cultivations after 12h (2.24–2.74 OD at 600 nm and 1.02–1.22 mol H2/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H2 producers in an anaerobic granular sludge exist in large proportions and their performance in terms of H2 production is quite similar.  相似文献   

3.
The state of the art for thermophilic UASB reactors is discussed focusing on the start-up of UASB reactors, the influence of the waste water composition and temperature on the development and maintenance of thermophilic granules, and the microbial composition and structure of thermophilic granules.  相似文献   

4.
The anaerobic biodegradation of carbon tetrachloride (CT) was investigated during the granulation process by reducing the hydraulic retention time, increasing the chemical oxygen demand (COD) and CT loadings in a 2l laboratory-scale upflow anaerobic sludge blanket (UASB) reactor. Anaerobic unacclimated sludge and glucose were used as seed and primary substrate, respectively. Granules were developed 4 weeks after start-up, which grew at an accelerated rate for 8 months, and then became fully grown. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to biomass ratio and specific methanogenic activity (SMA) were also considered during granulation. The granular sludge cultivated had a maximum diameter of 2.1 mm and SMA of 1.6 g COD/g total suspended solid (TSS) day. COD and CT removal efficiencies of 92 and 88% were achieved when the reactor was firstly operating at CT and COD loading rates of 17.5 mg/l day and 12.5 g/l day, respectively. This corresponds to hydraulic retention time of 0.28 day and food to biomass ratio of 0.5 g COD/g TSS day. Kinetic coefficients of maximum specific substrate utilization rate, half velocity coefficient, growth yield coefficient and decay coefficient were determined to be 2.4 × 10–3 mg CT/TSS day–1, 1.37 mg CT/l, 0.69 mg TSS/mg CT and 0.046 day–1, respectively for CT biotransformation during granulation.  相似文献   

5.
A laboratory scale upflow anaerobic sludge blanket (UASB) reactor was operated at 35 °C for over 200 days to investigate the granulation mechanism during tetrachloroethylene (TCE) biodegradation. Anaerobic, unacclimated sludge and glucose were used as seed and primary substrate, respectively. TCE-degrading granules developed after 1.5 months of start-up. They grew at an accelerated pace for 7 months. The TCE-degrading granules had a maximum diameter of 2.5 mm and specific methanogenic activity of 1.32 g chemical oxygen demand (COD) g–1 total suspended solid (TSS) day–1. 94% COD and 90% TCE removal efficiencies were achieved when the reactor was operating at loading rates as high as 160 mg TCE l–1 day–1 and 14 g COD l–1 day–1, after 230 days of continuous operation.  相似文献   

6.
Ye FX  Li Y 《Biodegradation》2007,18(5):617-624
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization.  相似文献   

7.
Liu YH  He YL  Yang SC  Li YZ 《Biotechnology letters》2006,28(20):1673-1678
Mean settling velocity of granular sludge in full-scale UASB (upflow anaerobic sludge blanket) and EGSB (expanded granular sludge bed) reactors was evaluated by settling column tests, and a settling velocity model based on the experimental results and available literature data was developed. It is concluded that the settling velocity should be calculated by the Allen formula, because the settling process of the granules is in the category of intermediate flow regime rather than in the laminar flow one. The comparison between calculated and measured values of the settling velocity shows an excellent agreement, with an average relative error of 4.04%. A simple but reliable mathematical method to determine the settling velocity is therefore proposed.  相似文献   

8.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

9.
Five laboratory scale upflow anaerobic sludge blanket (UASB) reactors were seeded with nongranular sewage sludge. Granulation was obtained after 15–35 days when between 0.5 and 2.0m/h upflow liquid velocity was applied, with an organic loading rate (OLR) of 8g COD/l.d (COD is the chemical oxygen demand). Granules had different physical characteristics and specific activity (g CODREMOVED/g volatile suspended solids) depending on the upflow liquid velocity applied. Granules were obtained in short startup periods (5 and 14 days) when a pilot-scale (180l) UASB reactor with a height of 4.7m was used to study hydraulic effects on the granulation process.  相似文献   

10.
We investigated the anaerobic ammonium oxidation (anammox) reaction in a labscale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater. The experiment was performed during 260 days under conditions of constant ammonium concentration (50 mg NH4/+-N/L) and different nitrite concentrations (50∼150 mg NO2-N/L). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as CandidatusB. Anammoxidans andK. Stuttgartiensis using fluorescencein situ hybridization (FISH) method.  相似文献   

11.
Confocal, laser-scanning microscopy was applied to acquire coenzyme F420-based autofluorescence images of middle sections of sludge granules during start-up of a thermophilic reactor that were seeded with mesophilically-grown microorganisms of granular sludge. Digital images were analyzed to calculate weighted averages of autofluorescence. The values were related (r 2=0.97) to specific methanogenic activities of granular sludge as the granules developed to steady state.  相似文献   

12.
In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470 mL-CH4/gVS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380 mL-CH4/gVS-added at the organic loading rate of 3.2 gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1 gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240 mL-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up-concentrated by evaporation to minimize its volume, and later be utilized as fertilizer.  相似文献   

13.
Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors   总被引:11,自引:0,他引:11  
Four identical bench-scale upflow anaerobic sludge blanket (UASB) reactors, R1, R2, R3 and R4, were used to assess nitrophenols degradation at four different hydraulic retention times (HRT). Reactor R1 was used as control, whereas R2, R3, and R4 were fed with 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. The concentration of each nitrophenol was gradually varied from 2 to 30 mg/l during acclimation. After acclimation reactors were operated under steady-state conditions at four different HRTs – 30, 24, 18, and 12 h, to study its effect on the removal of nitrophenols. Overall removal of 2-NP and 4-NP was always more than 99% but 2,4-DNP removal decreased from 96% to 89.7% as HRT was lowered from 30 to 12 h. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found to be the major intermediates during the degradation of 2-NP, 4-NP and 2,4-DNP, respectively. Out of the total input of nitrophenolic concentration (30 mg/l), on molar basis, about 41.2–48.4% of 2-NP, 59.4–68% of 4-NP, 30–26.6% of 2,4-DNP was recovered in the form of their respective amino derivatives at 30–12 h HRT. COD removal was 98–89%, 97–56%, 97–52%, and 94–46% at 30–12 h HRT for R1, R2, R3 and R4, respectively. Average cell growth was observed to be 0.15 g volatile suspended solid (VSS) per g COD consumed. Methanogenic inhibition was observed at lower HRTs (18 and 12 h), however denitrification was always more than 99% with non-detectable level of nitrite. The granules developed inside the reactors were black in color and their average size varied between 1.9 and 2.1 mm.  相似文献   

14.
To alleviate the fouling of a filter, simple substrates, dynamic filtration, and granular sludge were applied in an anaerobic membrane bioreactor (AnMBR). The results showed that under a transmembrane pressure < 20 kPa, the filter flux ranged between 15 and 20 l (m?2 h)?1 for a period of 30 days. The flux was higher than the typical flux of AnMBRs with conventional membranes and most current dynamic filters. In addition, the low cost of the filter avoided the need for a higher flux. Moreover, a stable granular sludge bed, which consumed all volatile fatty acids, was maintained. A compact fouling/filtration layer formed on the filter, which contributed to low effluent chemical oxygen demand concentrations and turbidity. In addition, substrate scarcity in the filtration zone resulted in the evolution of diverse bacteria on the filter.  相似文献   

15.
The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4–5 mg-LAS/l*day and a hydraulic retention time of one day.The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64–85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.  相似文献   

16.
A new hybrid reactor, the upflow blanket filter (UBF), which combined on open volume in the bottom two-thirds of the reactor for a sludge blanket and submerged plastic rings (Flexiring, Koch Inc., 235 m(2)/m(3)) in the upper one-third of the reactor volume, was studied. This UBF reactor was operated at 27 degrees C at loading rates varying from 5 to 51 g chemical oxygen demand (COD)/L d with soluble sugar wastewater (2500 mg COD/L). Maximum removal rates of 34 g COD/L d and CH(4) production rates of 7 vol/vol d [standard temperature and pressure (STP)] were obtained. The biomass activity was about 1.2 g COD/g volatile suspended solids per day. Conversion (based on effluent soluble COD) was over 93% with loading rates up to 26 g COD/L d. At higher loading rates conversion decreased rapidly. The packing was very efficient in retaining biomass.  相似文献   

17.
The purpose of this work was to evaluate the development of the anammox process by the use of granular sludge selected from a digestion reactor as a potential seed source in a lab-scale UASB (upflow anaerobic sludge blanket) reactor system. The reactor was operated for approximately 11 months and was fed by synthetic wastewater. After 200 days of feeding with NH4 + and NO2 as the main substrates, the biomass showed steady signs of ammonium consumption, resulting in over 60% of ammonium nitrogen removal. This report aims to present the results and to more closely examine what occurs after the onset of anammox activity, while the previous work described the start-up experiment and the presence of anammox bacteria in the enriched community using the fluorescencein situ hybridization (FISH) technique. By the last month of operation, the consumed NO2 N/NH4 +-N ratio in the UASB reactor was close to 1.32, the stoichiometric ratio of the anammox reaction. The obtained results from the influentshutdown test suggested that nitrite concentration would be one key parameter that promotes the anammox reaction during the start-up enrichment of anammox bacteria from granular sludge. During the study period, the sludge color gradually changed from black to red-brownish.  相似文献   

18.
19.
The longer start-up period of the Anammox process is due to the very low cellular yield and growth rates of Anammox bacteria. Nitrite inhibition is considered to be the key factor in the instability of the Anammox process during the operation. However, little attention was paid to the inhibitory effect of pH and free ammonia. This paper presents start-up and inhibition analysis of an Anammox biofilm reactor seeded with anaerobic granular sludge. Results showed that the start-up period could be divided into the sludge lysis phase, lag phase, propagation phase, stationary phase and inhibition phase. Optimization control could be implemented correspondingly to accelerate the start-up of Anammox bioreactors. Effluent pH increased to 8.7–9.1 when the nitrogen removal rate was higher than 1,200 mg l−1 day−1. The free ammonia concentration was accompanied with a higher level of 64–73 mg l−1. Inhibitory effects of high pH and free ammonia on Anammox bacteria contributed to the destabilization of the Anammox bioreactor during the first 125 days with influent KHCO3 of 0.5 g l−1. Increasing the suffering capacity in the inlet by dosing 1.25 g KHCO3 l−1 effectively reduced the pH variation, and the nitrogen removal performance of the reactor was further developed.  相似文献   

20.
Metal ions (Cd2+, Cu2+, Ni2+, Zn2+ and Cr3+) did not affect glucose degradation or the production of methane during anaerobic digestion with intact and disintegrated granules from a UASB (Upflow Anaerobic Sludge Blanket) reactor. However, when Cu2+ was at 500 mg g–1 VSS (volatile suspended solids) in the media, the glucose degradation rates and methane production rates decreased by 14% and 32% in disintegrated granules, respectively, whereas, in intact granules, decreases were 3% and 14%, respectively. When various electroplating metal ions were tested, 50% inhibition of acetate degradation and methane production were produced by 210–770 mg g–1 VSS and 120–630 mg g–1 VSS, respectively. The relative toxicity of the electroplating metals on methane production was in the order of Zn2+ (most toxic) > Ni2+ > Cu2+ > Cr3+ > Cd2+ (least toxic).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号