首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anoestrous Romney Marsh ewes with and without progesterone treatment (+P, -P) were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals for 48 h. Animals were slaughtered on Days 4, 5, 7 and 11 after the end of GnRH treatment and luteal function was assessed by the measurement of daily plasma progesterone concentrations. In all animals which ovulated (29/32, 91%) peripheral progesterone concentrations rose to 0.5-1.0 ng/ml within 3 days of the end of GnRH treatment. In 7/7 (100%) +P animals and 5/22 (23%) -P animals, progesterone concentrations continued to rise and were maintained at levels greater than 1.5 ng/ml until slaughter. In the remaining -P animals, plasma progesterone concentrations declined to reach basal levels by Day 5. Corpora lutea recovered from these animals showed signs of premature regression on Day 5 and were fully regressed by Day 7. Progesterone priming delayed the occurrence of the LH surge which occurred 39.1 +/- 3.6 h after the end of GnRH treatment in the +P animals compared to 20.2 +/- 1.74 h (P less than 0.001) in the -P animals in which luteal function was abnormal and 22.4 +/- 4.35 h in the -P animals in which luteal function was normal. These results show that abnormal luteal function occurs in the majority of GnRH-treated ewes in the absence of progesterone pretreatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ovulation was induced in seasonally anoestrous ewes by repeated 2-h injections of 250 ng Gn-RH, after 12 days (Group 1, N = 7; Group 2, N = 8), 2 days (Group 3, N = 8) or no (Group 4, N = 7) progesterone pretreatment. A preovulatory LH peak occurred spontaneously at a mean (+/- s.e.m.) time of 43.1 +/- 2.0 h, 38.5 +/- 3.1 h and 26.8 +/- 1.7 h after the start of Gn-RH treatment in Groups 1, 3 and 4 respectively, and was artificially induced in ewes in Group 2, after 24 h of treatment, by a single i.v. injection of 150 micrograms Gn-RH. Normal luteal function occurred in all progesterone-pretreated ewes, but in only 1/7 animals not treated with progesterone. These results demonstrate that, although normal luteal function in progesterone-primed ewes induced to ovulate with repeated injections of low doses of Gn-RH is associated with a delayed preovulatory LH peak, it is not this extended period of follicle development which is responsible for functional competence of the resultant corpus luteum. Since as little as 2 days of exposure to elevated plasma progesterone concentrations is effective, it is suggested that progesterone may act directly on the preovulatory follice.  相似文献   

3.
Normal and abnormal corpora lutea were recovered from anoestrous Romney Marsh ewes on Days 3, 4, 5 and 6 after treatment with small-dose (250 ng) multiple injections of GnRH followed by a bolus injection (125 micrograms) with (+P) and without (-P) progesterone pretreatment and a study made of their characteristics in vitro. Plasma progesterone concentrations initially rose concurrently in all animals but abnormal luteal function occurred in 70% of the -P ewes and was defined on Day 5 when plasma progesterone concentrations declined relative to those in the +P ewes. All corpora lutea recovered on Days 3 and 4 appeared macroscopically similar and there were no significant differences between the +P and -P groups in terms of luteal weight, progesterone content and binding of 125I-labelled hCG on these days. However, corpora lutea from the -P animals only exhibited a decline in progesterone production in vitro on Day 4 (P less than 0.01), and morphological differences became apparent on Days 5 and 6 when the abnormal corpora lutea from the -P animals also decreased in weight (P less than 0.01) and progesterone content (P less than 0.001). Binding of 125I-labelled hCG increased on Day 5 in the normal corpora lutea only. These results show that, although abnormal luteal function induced by GnRH treatment of anoestrous ewes could not be distinguished from normal corpora lutea before Day 5 by measurement of progesterone in peripheral plasma, a significant decline in progesterone production in vitro occurred on Day 4 in the abnormal corpora lutea. This was followed by significant decreases in weight and progesterone content and a failure to increase 125I-labelled hCG binding. Abnormal corpora lutea are therefore capable of some initial growth and progesterone production, before undergoing a rapid and premature regression from Day 4, which has similar characteristics to natural luteolysis.  相似文献   

4.
Twenty seasonally anoestrous ewes were pretreated with progesterone for 4 days and divided into four equal groups. Ewes in Group 1 received no GnRH treatment and were slaughtered immediately after progesterone removal. Ewes in Groups 2, 3 and 4 received i.v. injections of 250 ng GnRH every 2 h for 36 h starting at the time of progesterone removal. Ewes in Group 2 were slaughtered immediately after the 36 h GnRH pulsing, while ewes in Groups 3 and 4 were given a bolus injection of 125 micrograms GnRH at this time and were slaughtered 2 and 10 h after the bolus injection, respectively. Blood samples were collected every 30 min from ewes in Group 4 only, from 4 h before the start of GnRH treatment until 10 h after the bolus injection. Pulsing with GnRH resulted in episodic release of LH, and the bolus injection of GnRH was immediately followed by a preovulatory type LH surge in those ewes in which an endogenous surge had no already begun. The pituitary GnRH receptor numbers were significantly higher for the ewes in Group 2 than for any of the other treatment groups, while there was no significant difference in the receptor numbers between Groups 1, 3 and 4. The results suggest an up-regulation of GnRH receptors resulting from pulsatile GnRH therapy.  相似文献   

5.
Anoestrous Romney Marsh ewes with (+P) and without (-P) progesterone pretreatment were induced to ovulate by multiple low-dose injection of GnRH followed by a bolus injection of GnRH. Luteal function was assessed by twice daily measurement of plasma progesterone. Animals were slaughtered on Days 3 or 5 after the end of GnRH treatment and CL and endometrium were recovered. In all Day-5 ewes, blood samples were collected at 30-min intervals for 8 h on Days 3 and 5 for measurement of PGFM and oxytocin. At slaughter 92% of the Group +P ewes had ovulated compared with 54% of the Group -P ewes. The ovaries of some of the Group -P ewes only contained luteinized cysts either alone or in association with CL. In the ewes that ovulated, progesterone profiles were normal in all Group +P ewes, whereas Group -P ewes had 'normal' or 'abnormal' profiles in which plasma progesterone was declining prematurely. All of the CL from ewes with abnormal progesterone profiles were associated with follicular cysts, and were significantly smaller and with a lower progesterone content on Day 5. PGFM levels decreased (P less than 0.05) between Days 3 and 5 in ewes in Groups +P and -P with 'normal' CL but increased (P less than 0.01) in Group -P ewes with 'abnormal' CL. Oxytocin levels were lower in Group -P ewes with 'abnormal' CL on Day 5, than in 'normal' ewes in Groups -P (P less than 0.01) or +P (P less than 0.05). In 3/5 Day-5 ewes with 'abnormal' CL there was a clear association between a major peak of oxytocin and a rise in PGFM during the frequent sampling period on Day 3 or Day 5, and endometrial oxytocin binding sites were present at slaughter. This suggests that the premature regression of 'abnormal' CL occurs via the normal luteolytic mechanism. Although ewes in Groups +P and -P with 'normal' CL had similar progesterone profiles, plasma oxytocin was significantly higher (P less than 0.05) in the Group -P ewes and oxytocin binding sites were present only in this group, suggesting that progesterone pretreatment can influence the production of both oxytocin and its receptor.  相似文献   

6.
Plasma FSH concentrations were monitored in 34 seasonally anoestrous ewes in which ovulation was induced by the administration of low doses of GnRH, given as either a series of i.v. injections (75, 125, 250 or 500 ng/2 h) or as a continuous i.v. infusion (125 or 250 ng/h). Fifteen of the animals had been pretreated with progesterone for 14 days. Before the start of GnRH treatment, mean FSH concentrations did not differ between progesterone-pretreated and non-pretreated ewes (23 ± 3.0 and 20 ± 2.0 ng/ml, respectively). In a significant (P < 0.01) proportion of animals mean FSH concentrations were elevated for the first 2 h of GnRH treatment, but thereafter they declined progressively and were significantly (P < 0.001) lower than pretreatment levels over the second 12 h of GnRH treatment. These changes in FSH concentrations were not related to dose of GnRH, the mode of administration or to progesterone priming. These results demonstrate that the pattern of FSH secretion associated with GnRH-induced ovulation in the seasonally anoestrous ewe is similar to that observed from the time of luteal regression in the naturally cycling ewe. In addition, although pretreatment with progesterone has a marked effect on subsequent luteal function, this is not mediated through changes in plasma FSH concentrations.  相似文献   

7.
The aim of the present study was to evaluate the susceptibility of the corpus luteum to d-cloprostenol (synthetic analog of PGF(2α)) throughout the luteal phase in llamas. Female llamas (n=43) were induced to ovulate by GnRH injection in the presence of an ovulatory follicle and randomly assigned into one of six groups: control and treated with an injection of d-cloprostenol on Day 3, 4, 5, 6 or 8 post GnRH. Blood samples were collected to determine plasma progesterone concentrations. There was no effect of treatment on animals injected on Day 3 or 4 post-GnRH. In animals treated on Day 5, different responses were observed. No effect of treatment was recorded in 27% of the animals whereas 55% of the llamas showed a transitory decrease followed by a recovery in plasma progesterone concentrations after d-cloprostenol injection, indicative of a resurgence of the corpus luteum, extending the luteal phase a day more than in control animals. In the remaining 18% of the animals injected on Day 5, (corresponding to those exhibiting the greatest plasma progesterone concentrations at the day of injection), complete luteolysis was observed. Plasma progesterone concentrations decreased to below 1 ng ml(-1) 24 h after d-cloprostenol in llamas injected on Day 6 or 8 post-GnRH. In conclusion, the corpus luteum of llamas is completely refractory to PGF(2α) until Day 4 after induction of ovulation, being partially sensitive by Day 5 and fully responsive to PGF(2α), by Day 6 after induction of ovulation.  相似文献   

8.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

9.
Previous studies show that hysterectomy on Day 1 of pseudopregnancy prolongs serum progesterone secretion in estrogen-treated pseudopregnant rabbits. These studies were undertaken to determine the day of pseudopregnancy when uterine factors are released to alter luteal function. When hysterectomies were performed on either Day 5, 8, 10, or 13 of pseudopregnancy, serum progesterone concentrations were greater than 10 ng/ml between Days 18 and 27 of pseudopregnancy compared to levels of approximately 4 ng/ml in sham-hysterectomized rabbits on these same days. In contrast, serum progesterone levels were not elevated when hysterectomies were performed on Day 11 of pseudopregnancy and were only partially maintained when hysterectomies were performed on Day 12 of pseudopregnancy. Twice daily injections of prolactin (1.5 mg, s.c.) between Days 1 and 33 of pseudopregnancy were unable to mimic the effect of estradiol in the hysterectomized rabbit. Twice daily injections of indomethacin (8 mg/kg, s.c.) between Days 6 and 23 of pseudopregnancy lowered uterine and luteal prostaglandin F2 alpha levels approximately 10-fold on Day 24 of pseudopregnancy but did not maintain progesterone secretion. Serum cholesterol levels were not altered by hysterectomy on any day and were thus not related to the maintenance of progesterone production. These results suggest that the uterus produces both inhibitory and stimulatory factors that effect luteal progesterone secretion. First, an inhibitor is released between Days 10 and 11 of pseudopregnancy in estrogen-treated rabbits that prevents the rabbit corpus luteum from responding to estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Doses of 100 or 200 micrograms of a novel GnRH antagonist ([N-acetyl-D beta Na11-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8-D-Ala10]NH2 GnRH) (4 animals/dose) were administered on Days 10/11 of the luteal phase and induced a marked suppression of circulating bioactive LH and progesterone concentrations within 1 day of treatment (P less than 0.01). Thereafter, progesterone concentrations remained low or undetectable until after the next ovulation. Similar results were obtained when 200 micrograms antagonist were given on Days 5/6 of the luteal phase (N = 4). The interval from injection of antagonist (200 micrograms but not 100 micrograms) to ovulation (based on a rise in progesterone above 10 ng/ml) was significantly longer than that from prostaglandin-induced luteal regression to ovulation in control cycles (N = 4/treatment) (range, 13-15 days after antagonist vs 8-10 days after prostaglandin, P less than 0.01). This delay of 4-5 days was equivalent to the duration for which LH concentrations were significantly suppressed by 200 micrograms antagonist when administered to ovariectomized animals (N = 3). Corpus luteum function during the cycle after GnRH antagonist treatment appeared normal according to the pattern of circulating progesterone. These results show that corpus luteum function and preovulatory follicular development in the marmoset monkey are dependent on pituitary gonadotrophin secretion.  相似文献   

11.
Luteal function of induced corpora lutea in the bitch   总被引:1,自引:0,他引:1  
Nineteen anestrous bitches with a mean of 22 kg body weight and ranging from 2 to 4 years of age were induced to exhibit estrus and ovulate using PMSG and HCG. Twelve days after the first day of estrus, bitches were assigned to four treatment groups. Group (A) consisted of six bitches, Group (B) of five bitches and Groups (C) and (D) of four bitches each. At this time, bitches in Groups (A), (B) and (C) were laparotomized and those assigned to Groups (A) and (B) were bilaterally hysterectomized leaving the cervix and oviducts intact. Although bitches in Group (C) were laparotomized, they were not hysterectomized. Group (D) bitches were not subjected to any surgical procedures. Homologous uterine extract was prepared from each bitch in Group (A) and administered intramuscularly beginning on day 25 (day 0 = first day of estrus) and continued every other day for 61 days post-estrus. Bitches in Group (B) were similarly injected with equal volumes of 0.9% saline. Blood samples, obtained prior to laparotomy and every other day for 85 days thereafter, were assayed for plasma progesterone concentrations using radioimmunoassay. One bitch in each of Groups (A) and (D) did not form luteal tissue following treatment with PMSG and HCG although both bitches exhibited estrus following treatment. All other bitches showed an increase in progesterone levels (4 to 19 ng/ml) between the first day of estrus and 10 days post-estrus. Thereafter, progesterone levels progressively declined in all groups with levels below 1 ng/ml between 38 to 40 days post-estrus. Results of this study suggested that CL formed in the bitch following PMSG and HCG treatment have a reduced function compared to non-induced CL of a normal, non-fertile estrous cycle. Such premature CL regression appears to be independent of the presence or absence of the uterus.  相似文献   

12.
Gonadotrophin releasing hormone (GnRH)-induced ovulation in seasonally anestrous ewes is associated with a high incidence of defective corpora lutea (CL), which can be completely eliminated by priming ewes with progesterone before GnRH treatment, but the physiological basis of this has remained elusive. This study tested the hypothesis that progesterone priming eliminates defective luteal function by altering the expression of Vascular Endothelial Growth Factor (VEGF), its receptor VEGFR-2, and angiopoietin (ANG)-1, ANG-2 and their receptorTIE-2 in the early CL. Fifteen seasonally anestrous ewes were treated by i.m. injection with 20 mg of progesterone 3 days before the start of GnRH treatment, while another 15 animals served as controls. Intravenous injections of 500 ng GnRH were given to all the ewes every 2 h for 28 h, followed by a 300 μg GnRH bolus injection to synchronize the preovulatory luteinizing hormone (LH) surge. Corpora lutea were collected 1, 2 and 4 days after ovulation and analyzed for protein and mRNA expression of VEGF, VEGFR-2, ANG-1, ANG-2 and Tie-2 using Western Immunoblotting and in situ hybridization. VEGF, VEGFR-2 and ANG-1 expression was significantly higher (P ≤ 0.05) in the CL of progesterone-primed animals compared to non-primed ones. However, no differences were observed in the ANG-2 or Tie-2 expression levels between the two treatment groups. These data suggest that progesterone priming of the preovulatory follicle alters the expression of some angiogenic growth factors in the early CL, leading to greater vascular stability and thereby normal luteal function.  相似文献   

13.
Eighteen anestrous crossbred suckled beef cows were assigned to one of three treatment groups. Treatments were as follows: Group 1 cows (n = 3) were untreated and served as controls, Groups 2 cows (n = 6) were intramuscularly administered 250 mug GnRH, and Group 3 cows (n = 9) were subcutaneously administered a progestin ear implant for eight days prior to the administration of 250 mug GnRH. The GnRH was given to cows in Group 3 24 h after the time of progestin implant removal. Cows were 21 to 31 days postpartum at the time of GnRH treatment. The percent of cows that ovulated after the time of GnRH treatment was 0%, 83% and 100% for Groups 1, 2 and 3, respectively. For the cows that ovulated, more (P < 0.05) cows in Group 2 (80%) had abnormal luteal phases than in Group 3 (33%). The GnRH-induced LH release and peak LH concentrations were greater (P < 0.01) in the cows in Group 3 (214.3 +/- 37.1 ng/ml) than in the cows in Group 2 (142.7 +/- 19.0 ng/ml). The LH concentrations of the control cows remained very low throughout the sampling period. Although prostaglandin metabolite (PGFM) concentrations were not significantly (P > 0.10) different among groups, mean concentrations were higher and more variable for cows in Groups 1 (39.2 +/- 5.2 pg/ml) and 2 (39.4 + 6.1 pg/ml) than for cows in Group 3 (25.1 + 1.4 pg/ml).  相似文献   

14.
Small-dose, multiple injections of GnRH given to seasonally anoestrous ewes induce final stages of the preovulatory follicle development, but result in an high incidence of defective CL unless animals are primed with progesterone, which completely eliminates luteal dysfunction. Progesterone priming upregulates luteal vascularization; however, its effect on follicular angiogenesis is poorly understood. This study tested the hypothesis that progesterone priming of seasonally anoestrous ewes treated with dose multiple injections of GnRH eliminates defective luteal function by altering the expression of vascular endothelial growth factor (VEGF), VEGF receptor-2, angiopoietin (ANG)-1, ANG-2, and TIE-2 during early and late preovulatory follicle development. Ten seasonally anoestrous ewes were given 20 mg of progesterone im 3 days before the start of GnRH treatment; 10 other animals served as controls. Intravenous injections of 500 ng GnRH were given to all animals every 2 hours for 28 hours, followed at 30 hours with a 300-μg GnRH bolus injection to synchronize the preovulatory LH surge. Ovaries were collected at 24 and 46 hours after the start of GnRH treatment. Small (2–2.5 mm) and large (>2.5 mm) follicles were analyzed for protein and mRNA expression of the angiogenic factors using immunohistochemistry and in situ hybridization assays. Progesterone priming did not have an influence on angiogenic factor levels in small follicles. However, progesterone-primed animals showed significantly (P ≤ 0.05) higher levels of VEGF, VEGFR-2, ANG-1, and ANG-2 in large follicles compared with nonprimed ones. These data suggest that progesterone priming alters the expression of angiogenic factors in large preovulatory follicles, ensuring adequate luteal development and function.  相似文献   

15.
Six young female fallow deer, including 3 that were ovariectomized at 9 months of age, were blood sampled at frequent intervals after i.v. injections of (1) ACTH analogue (tetracosactrin), (2) GnRH analogue (buserelin) and (3) saline solution on separate occasions at 11, 13, 15 and 18 months of age. Relative to prechallenge plasma values, ACTH administration resulted in a 4-10-fold increase in mean plasma progesterone concentrations, but only a 10-45% increase in mean plasma cortisol concentrations, within 40 min for entire and ovariectomized does during the prepubertal periods (11, 13 and 15 months) and for ovariectomized does during the post-pubertal period (18 months). Post-pubertal entire does exhibited high mean basal plasma progesterone concentrations (3-4 ng/ml) indicating a luteal source of secretion, with the ACTH-induced progesterone response being additive to the luteal progesterone but of similar magnitude to responses in the ovariectomized does. There was no significant ACTH challenge effect on mean plasma LH concentrations for entire or ovariectomized does at all ages. GnRH administration had no significant effects on mean plasma concentrations of progesterone and cortisol of entire and ovariectomized does, although there was a small increase in mean plasma progesterone values in post-pubertal does that may have reflected a luteal response to GnRH (via LH). GnRH challenge resulted in marked increases in mean plasma LH concentrations but the response patterns were different for the 2 types of does, being more rapid and of higher magnitude for ovariectomized does.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Large antral follicles (13 to 20 mm in diameter) were collected from ovaries of 109 cows and 17 heifers that also had a regressed corpus luteum at slaughter. Thirty percent of the animals had been injected once with prostaglandin F(2)alpha 48 hours before slaughter. Follicles were divided into 3 groups based on estradiol and oxytocin concentrations in the follicular fluid: Group I follicles, estradiol>/=100 ng/ml and oxytocin<65 pg/ml (preovulatory and assumed pre-gonadotropin surge); Group II follicles, estradiol<100 ng/ml and oxytocin>/=65 pg/ml (preovulatory and assumed post-gonadotropin surge); and Group III follicles, estradiol<100 ng/ml and oxytocin<65 pg/ml (atretic follicles). Treatment with prostaglandin F(2)alpha significantly increased the number of viable granulosa cells and estradiol content in Group I follicles. The estradiol: progesterone ratio was significantly higher in Group I vs Groups II and III, but it was similar for Group II healthy follicles and Group III atretic follicles. To ascertain the classification of follicles, PGF(2)alpha was administered on Day 6 of the cycle to induce corpus luteum regression, and a GnRH analog was administered 24 hours later. At 23 hours after GnRH analog treatment, follicular oxytocin levels significantly rose to 103 pg/ml. Concomitantly, estradiol concentrations fell to below 100 ng/ml. This response was not evident by 13 h after injection of the GnRH analog. The results indicate that follicular estradiol and oxytocin concentrations may be used as a means for the physiological classification of large bovine follicles.  相似文献   

17.
To induce cyclicity in dairy cattle with prolonged postpartum anestrous, repeated dosages of gonadotrophin releasing hormone (GnRH) were administered. Twenty-one (21) Holstein dairy cows and heifers calving between October 1, 1989, and January 1, 1990, at the Louisiana State University Dairy were used in the study. The animals were defined as anestrous if their plasma progesterone remained < 1.0 ng/ml until 32 to 36 days post partum. They were randomly assigned to one of two treatment groups. Group 1 (n=6) received two injections 1 hour apart of a GnRH analogue (50 mug) (i.m.). The treatment was repeated twice weekly at 3- to 4-day intervals. Group 2 controls (n=6) received saline (1 ml, i.m.) on the same schedule as Group 1. A maximum of 12 to 13 treatments were given. Cattle that had plasma progesterone >1.0 ng/ml by 32 to 36 days post partum were identified as Group 3, or cyclic contemporaries (n=9). Postpartum anestrous in the herd was 46.2% (18 39 ). Cows in Group 1 had significantly fewer days to first plasma progesterone > 1.0 ng/ml than those in Group 2 (P < 0.05), but more days than Group 3. Cows in Group 1 also had significantly fewer treatments to induce plasma progesterone > 1.0 ng/ml than those in Group 2 (P < 0.05). There were no significant differences among treatment groups in the number of days from calving to first observed estrus or the number of days open (P > 0.05).  相似文献   

18.
The aim of this study was to assess the suitability of a GnRH infusion regimen (125 ng/h or 250 ng/h) to induce estrous behaviour, ovulation and normal corpus luteum function in progesterone-primed Romney ewes each month of seasonal anestrus (i.e. September to February inclusive) over two years. None of the progesterone-primed control ewes (i.e. no GnRH treatment; N = 120 observations) ovulated, showed normal corpus luteum function or displayed estrous behaviour at any time during anestrus. Approximately 27 and 50% of the respective 125 ng/h and 250 ng/h GnRH-treated ewes (N = 120 observations per GnRH treatment) ovulated and showed normal luteal function. Of those which ovulated 59.2% and 52.4% in the respective 125 ng/h and 250 ng/h GnRH treatment groups showed estrous behaviour. There was a significant effect of GnRH dose on the median number of ovulations (250 ng/h > 125 ng/h; P<0.01) but no overall difference (when both treatment years and GnRH doses were pooled) in the median number of ovulations per month of anestrus. The frequency of ewes with an ovulation rate >2 was low with only 4/95 treated ewes with more than 2 corpora lutea (CL). Treatment of progesterone-primed ewes with 250 ng/h GnRH increased plasma LH (P<0.01) but not FSH concentrations; a significant increase in LH pulse amplitude (P<0.05) but not LH pulse frequency was observed. The plasma gonadotropin levels in the 125 ng/h GnRH treatment groups were not studied. We suggest that in breeds such as the Romney which have a strict (i.e. 5-6 month) anovulatory interval, the GnRH-infusion technique may be of limited practical use for inducing pregnancies during the non-breeding season.  相似文献   

19.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

20.
In sheep, induction of ovulation during anoestrus is accompanied by a high incidence of short luteal phases, though pre-treatment with progesterone can overcome this problem. We have investigated the effects of supplementing oestradiol during GnRH-induced ovulation on subsequent PGF2alpha release and luteal life span. Thirty anoestrous crossbred ewes received 250 ng GnRH i.v. at 2 h intervals for 48 h to induce ovulation either alone (group 1; n=10) or in association with either an i.m. injection of 20 mg progesterone 3 days earlier (group 2; n=10) or 3 i.m. injections of 10 microg oestradiol at 8 h intervals on the second day of GnRH treatment (group 3; n=10). Laparoscopy, performed 3 days following GnRH to confirm ovulation and 8 days later, coupled with plasma progesterone analysis were used to determine luteal life span. On day 4 following GnRH, plasma samples were collected at 20 min intervals for 8 h to monitor PGF2alpha release. One ewe from group 1 failed to ovulate and was excluded from further analysis. All groups showed an increase (P<0.01) in plasma oestradiol during GnRH treatment, with group 3 showing a marked (P<0.001) increase over that seen in the other two groups. In group 1 there were 1.4+/-0.2 PGF2alpha episodes/ewe/8 h. In group 2, pre-treatment with progesterone caused the complete inhibition of PGF2alpha episodes (0 episodes/ewe/8 h) while in group 3, treatment with oestradiol resulted in a significant reduction (0.3+/-0.1 episodes/ewe/8 h) compared with group 1 (P<0.01). In group 1, 9/9 ewes exhibited short cycles compared with 2/10 ewes in group 2 (P<0.01). In group 3 the proportion of ewes showing short cycles 7/10 ewes was not significantly different from the other groups. While treatment with oestradiol caused a significant attenuation of PGF2alpha release, this was associated with only a partial reduction in the incidence of short cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号