首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of m-Cl-peroxy benzoic acid (CPBA) higher than 0.1 mM decrease the ATP-content of Saccharomyces cerevisiae in the presence of glucose in 1 min to less than 10% of the initial value. In the absence of glucose, 1.0 mM CPBA is necessary for a similar effect. After the rapid loss of ATP in the first min in the presence of glucose caused by 0.2 mM CPBA, the ATP-content recovers to nearly the initial value after 10 min. Aerobic glucose consumption and ethanol formation from glucose are both completely inhibited by 1.0 mM CPBA. Assays of the activities of nine different enzymes of the glycolytic pathway as well as analysis of steady state concentrations of metabolites suggest that glyceraldehyde-3-phosphate dehydrogenase is the most sensitive enzyme of glucose fermentation. Phosphofructokinase and alcohol dehydrogenase are slightly less sensitive. Incubation for 1 or 10 min with concentrations of 0.05 to 0.5 mM CPBA causes a) inhibition of glyceraldehyde-3-phosphate dehydrogenase, b) decrease of the ATP-content and c) a decrease of the colony forming capacity. From these findings it is concluded that the disturbance of the ATP-producing glycolytic metabolism by inactivation of glyceraldehyde-3-phosphate dehydrogenase may be an explanation for cell death caused by CPBA.Abbreviations CPBA m-Chloro-peroxy benzoic acid - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - F-1,6-P2 frnctose-1,6-bisphosphate - DAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - 2PGA 2-phosphoglycerate - PEP phosphoenol pyruvate - Pyr pyruvate - EtOH ethanol - PFK phosphofructokinase - GAPDH glyceraldehyde-3-phosphate dehydrogenase - ADH alcohol dehydrogenase Dedicated to Prof. Dr. Wolfgang Gerok at the occasion of his 60th birthday  相似文献   

2.
The activity of the glycolytic enzymes PFK, PFP, PK and aldolaseas well as the content of glucose, fructose, glucose-6-phosphateand fructose-6-phosphate were compared in the embryos of airand oxygen-incubated seeds of Strelitzia juncea. Determinationswere made during the first 4 d of incubation, prior to radicleemergence, which commences on day five for oxygen-treated seeds. No difference in PFK activity was found for the two treatments,and for both treatments PFK tended to increase with the incubationperiod. The fr2, 6P2-stimulated PFP activity was slightly higherfor oxygen-incubated seeds, and showed a significant increasein activity over the 4 d incubation period for both treatments.No significant change in the general trend of PK and aldolaseactivity resulted from incubating the seeds in oxygen. The almost equimolar glucose and fructose contents of the embryoswere lower after 1 d of oxygen incubation of the seeds, andthe content decreased sharply during the incubation period.It is concluded that a moderate increase in the glycolytic capacityof embryos resulted from oxygen treatment of S. juncea seeds. Key words: Dormancy, glycolysis, Strelitzia juncea  相似文献   

3.
The glycolytic flux and the regulation of phosphofructokinase (PFK) activity by fructose 2,6-bisphosphate and covalent modification was investigated in isolated ventricles of land snail Helix lucorum perfused with or without serotonin. Serotonin evoked a significant increase in the level of glycolytic intermediates and a threefold increase of glycolytic flux. Studies of saturation curves of PFK for the substrate fructose 6-phosphate at pH similar to intracellular pH of heart muscle showed that serotonin increases enzyme sensitivity to activation by fructose 6-phosphate. Moreover, PFK preparations from ventricles perfused with serotonin exhibited lower K a values for the activators AMP and fructose 2,6-bisphosphate, compared with the enzyme preparations from serotonin-untreated ventricles. The results suggest that PFK was converted to a more active form when exposed to serotonin. In vitro experiments of PFK phosphorylation showed that the conversion of the enzyme to a more active form was possibly due to its phosphorylation by an endogenous cyclic-AMP-dependent protein kinase. The concentration of fructose 2,6-bisphosphate increased in serotonin-treated ventricles and it exerted a synergistic effect with AMP on the activation of PFK. The bound fraction of glycolytic enzymes increased in the serotonin-treated ventricles only after the 4th min of perfusion. The results suggest that the stimulation of glycolytic flux in the ventricles of H. lucorum in the first minutes of perfusion with serotonin was partly due to the activation of PFK via enzyme molecule covalent modification and to increase of fructose 2,6-bisphosphate. Accepted: 8 April 1997  相似文献   

4.
Sufficient supply of reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a prerequisite of the overproduction of isoprenoids and related bioproducts in Saccharomyces cerevisiae. Although S. cerevisiae highly depends on the oxidative pentose phosphate (PP) pathway to produce NADPH, its metabolic flux toward the oxidative PP pathway is limited due to the rigid glycolysis flux. To maximize NADPH supply for the isoprenoid production in yeast, upper glycolytic metabolic fluxes are reduced by introducing mutations into phosphofructokinase (PFK) along with overexpression of ZWF1 encoding glucose‐6‐phosphate (G6P) dehydrogenase. The PFK mutations (Pfk1 S724D and Pfk2 S718D) result in less glycerol production and more accumulation of G6P, which is a gateway metabolite toward the oxidative PP pathway. When combined with the PFK mutations, overexpression of ZWF1 caused substantial increases of [NADPH]/[NADP+] ratios whereas the effect of ZWF1 overexpression alone in the wild‐type strain is not noticeable. Also, the introduction of ZWF1 overexpression and the PFK mutations into engineered yeast overexpressing acetyl‐CoA C‐acetyltransferase (ERG10), truncated HMG‐CoA reductase isozyme 1 (tHMG1), and amorphadiene synthase (ADS) leads to a titer of 497 mg L–1 of amorphadiene (3.7‐fold over the parental strain). These results suggest that perturbation of upper glycolytic fluxes, in addition to ZWF1 overexpression, is necessary for efficient NADPH supply through the oxidative PP pathway and enhanced production of isoprenoids by engineered S. cerevisiae.  相似文献   

5.
The understanding of control of metabolic processes requires quantitative studies of the importance of the different enzymatic steps for the magnitude of metabolic fluxes and metabolite concentrations. An important element in such studies is the modulation of enzyme activities in small steps above and below the wild-type level. We review a genetic approach that is well suited for both Metabolic Optimization and Metabolic Control Analysis and studies on the importance of a number of glycolytic enzymes for metabolic fluxes in Lactococcus lactis. The glycolytic enzymes phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK) and lactate dehydrogenase (LDH) are shown to have no significant control on the glycolytic flux in exponentially growing cells of L. lactis MG1363. Introduction of an uncoupled ATPase activity results in uncoupling of glycolysis from biomass production. With MG1363 growing in defined medium supplemented with glucose, the ATP demanding processes do not have a significant control on the glycolytic flux; it appears that glycolysis is running at maximal rate. It is likely that the flux control is distributed over many enzymes in L. lactis, but it cannot yet be excluded that one of the remaining glycolytic steps is a rate-limiting step for the glycolytic flux.  相似文献   

6.
Despite the fact that the area of glycolysis in Lactococcus lactis has been intensively studied, only a limited number of studies have been focused on the regulation of uptake of glucose itself. Using the tool of the glucostat fed-batch mode of culture, it was demonstrated in our earlier work that the concentration of glucose regulates its uptake rate and that the control of the glycolytic flux resides to a large extent in processes outside the pathway itself, like glucose transport and the ATP consuming reactions, while allosteric properties of key enzymes like phosphofructokinase (PFK) have a significant influence on the control. Extending our work, we report here the results of fermentations with engineered L. lactis strains with altered PFK activity in which the pfkA gene from Aspergillus niger, and its truncated version pfk13 that encodes a shorter PFK1 fragment were cloned. The results in this study suggest that, under the optimum for the microorganism applied microaerobic conditions, the glycolytic capacity of L. lactis was significantly increased in engineered strains with increased PFK activity. The transformant strain in which the truncated pfk13 gene of A. niger was expressed performed more efficiently as it was able to grow successfully in glucostat cultures with 277 mM glucose - while the optimum glucose concentration for the parental strain was 55 mM. The present work demonstrates the direct effect of PFK activity on the glycolytic flux in L. lactis since a twofold increase in specific PFK activity (from 7.1 to 14.5 U/OD600) resulted in a proportional increase of the maximum specific rates of glucose uptake (from 0.8 to 1.7 μM s−1 g CDW−1) and lactate formation (from 15 to 22.8 g lactate (g CDW)−1 h−1).  相似文献   

7.
Summary The involvement of phosphofructokinase (PFK) in glycolytic control was investigated in the marine peanut worm Sipunculus nudus. Different glycolytic rates prevailed at rest and during functional and environmental anaerobiosis: in active animals glycogen depletion was enhanced by a factor of 120; during hypoxic exposure the glycolytic flux increased only slightly. Determination of the mass action ratio (MAR) revealed PFK as a non-equilibrium enzyme in all three physiological situations. Duirng muscular activity the PFK reaction was shifted towards equilibrium; this might account for the observed increase in glycolytic rate under these conditions. PFK was purified from the body wall muscle of S. nudus. The enzyme was inhibited by physiological ATP concentrations and an acidic pH; adenosine monophosphate (AMP), inorganic phosphate (Pi), and fructose-2,6-bisphosphate (F-2,6-P2) served as activators. PFK activity, determined under simulated cellular conditions of rest and muscular work, agreed well with the glycolytic flux in the respective situations. However, under hypoxia PFK activity surpassed the glycolytic rate, indicating that PFK may not be rate-limiting under these conditions. The results suggest that glycolytic rate in S. nudus is mainly regulated by PFK during rest and activity. Under hypoxic conditions the regulatory function of PFK is less pronounced.Abbreviations ATP, ADP, AMP adenosine tri-, di-, monophosphate - DTT dithiothreitol - EDTA ethylene diaminetetra-acetic acid - F-6-P fructose-6-phosphate - F-1,6-P2 fructose-1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate; bwm, body wall muscle; fresh mass, total body weight - G-6-P glucose-6-phosphate - H enthalpy change - K a activation constant - K eq equilibrium constant - K i inhibition constant - K m Michaelis constant - MAR mass action ratio - NMR nuclear magnetic resonance - PFK phosphofructokinase - Pi inorganic phosphate - PLA phospho-l-arginine - SD standard deviation - TRIS, TRIS (hydroxymethyl) aminomethane - TRA triethanolamine hydrochloride - V max maximal velocity  相似文献   

8.
Zheng  Lu  Liu  Mingqing  Sun  Jiaduo  Wu  Bin  He  Bingfang 《Applied microbiology and biotechnology》2017,101(9):3677-3687

Sporolactobacillus inulinus is a superior d-lactic acid-producing bacterium and proposed species for industrial production. The major pathway for d-lactic acid biosynthesis, glycolysis, is mainly regulated via the two irreversible steps catalyzed by the allosteric enzymes, phosphofructokinase (PFK) and pyruvate kinase. The activity level of PFK was significantly consistent with the cell growth and d-lactic acid production, indicating its vital role in control and regulation of glycolysis. In this study, the ATP-dependent PFK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. The PFK was allosterically activated by both GDP and ADP and inhibited by phosphoenolpyruvate; the addition of activators could partly relieve the inhibition by phosphoenolpyruvate. Furthermore, monovalent cations could enhance the activity, and Na+ was the most efficient one. Considering this kind activation, NaOH was investigated as the neutralizer instead of the traditional neutralizer CaCO3. In the early growth stage, the significant accelerated glucose consumption was achieved in the NaOH case probably for the enhanced activity of Na+-activated PFK. Using NaOH as the neutralizer at pH 6.5, the fermentation time was greatly shortened about 22 h; simultaneously, the glucose consumption rate and the d-lactic acid productivity were increased by 34 and 17%, respectively. This probably contributed to the increased pH and Na+-promoted activity of PFK. Thus, fermentations by S. inulinus using the NaOH neutralizer provide a green and highly efficient d-lactic acid production with easy subsequent purification.

  相似文献   

9.
Metabolic versatility has been increasingly recognized as a major virulence mechanism that enables Mycobacterium tuberculosis to persist in many microenvironments encountered in its host. Glucose is one of the most abundant carbon sources that is exploited by many pathogenic bacteria in the human host. M. tuberculosis has an intact glycolytic pathway that is highly conserved in all clinical isolates sequenced to date suggesting that glucose may represent a non-negligible source of carbon and energy for this pathogen in vivo. Fructose-6-phosphate phosphorylation represents the key-committing step in glycolysis and is catalyzed by a phosphofructokinase (PFK) activity. Two genes, pfkA and pfkB have been annotated to encode putative PFK in M. tuberculosis. Here, we show that PFKA is the sole PFK enzyme in M. tuberculosis with no functional redundancy with PFKB. PFKA is required for growth on glucose as sole carbon source. In co-metabolism experiments, we report that disruption of the glycolytic pathway at the PFK step results in intracellular accumulation of sugar-phosphates that correlated with significant impairment of the cell viability. Concomitantly, we found that the presence of glucose is highly toxic for the long-term survival of hypoxic non-replicating mycobacteria, suggesting that accumulation of glucose-derived toxic metabolites does occur in the absence of sustained aerobic respiration. The culture medium traditionally used to study the physiology of hypoxic mycobacteria is supplemented with glucose. In this medium, M. tuberculosis can survive for only 7–10 days in a true non-replicating state before death is observed. By omitting glucose in the medium this period could be extended for up to at least 40 days without significant viability loss. Therefore, our study suggests that glycolysis leads to accumulation of glucose-derived toxic metabolites that limits long-term survival of hypoxic mycobacteria. Such toxic effect is exacerbated when the glycolytic pathway is disrupted at the PKF step.  相似文献   

10.
11.
Glucose metabolism plays an essential role in the physiology and development of almost all living organisms. In the present study we investigated glucose metabolism during the embryogenesis of the hard tick Boophilus microplus. An increase in glucose and glycogen content during the embryonic development of B. microplus was detected and shown to be due to the high enzyme activity of both gluconeogenesis and glycolytic pathways. Glucose 6-phosphate (G-6P), formed by hexokinase, is driven mainly to pentose-phosphate pathway, producing fundamental substrates for cellular biosynthesis. We detected an increase in glucose 6-phosphate dehydrogenase and pyruvate kinase activities after embryo cellularization. Accumulation of key metabolites such as glycogen and glucose was monitored and revealed that glycogen content decreases from day 1 up to day 6, as the early events of embryogenesis take place, and increases after the formation of embryo cellular blastoderm on day 6. Glucose and guanine (a sub-product of amino acids degradation in arachnids) accumulate almost concomitantly. The activity of phosphoenolpyruvate carboxykinase was increased after embryo cellularization. Taken together these data indicate that glycogen and glucose, formed during B. microplus embryogenesis after blastoderm formation, are produced by intense gluconeogenesis.  相似文献   

12.
Protozoan Kinetoplastida, including the pathogenic trypanosomatids of the genera Trypanosoma and Leishmania, compartmentalize several important metabolic systems in their peroxisomes which are designated glycosomes. The enzymatic content of these organelles may vary considerably during the life-cycle of most trypanosomatid parasites which often are transmitted between their mammalian hosts by insects. The glycosomes of the Trypanosoma brucei form living in the mammalian bloodstream display the highest level of specialization; 90% of their protein content is made up of glycolytic enzymes. The compartmentation of glycolysis in these organelles appears essential for the regulation of this process and enables the cells to overcome short periods of anaerobiosis. Glycosomes of all other trypanosomatid forms studied contain an extended glycolytic pathway catalyzing the aerobic fermentation of glucose to succinate. In addition, these organelles contain enzymes for several other processes such as the pentose-phosphate pathway, beta-oxidation of fatty acids, purine salvage, and biosynthetic pathways for pyrimidines, ether-lipids and squalenes. The enzymatic content of glycosomes is rapidly changed during differentiation of mammalian bloodstream-form trypanosomes to the forms living in the insect midgut. Autophagy appears to play an important role in trypanosomatid differentiation, and several lines of evidence indicate that it is then also involved in the degradation of old glycosomes, while a population of new organelles containing different enzymes is synthesized. The compartmentation of environment-sensitive parts of the metabolic network within glycosomes would, through this way of organelle renewal, enable the parasites to adapt rapidly and efficiently to the new conditions.  相似文献   

13.
Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.  相似文献   

14.
Summary Dormancy in the sporangiospores of Phycomyces blakesleeanus can be broken by a short pretreatment (10 min at 30° C) with NH4-acetate. The effect is partly reversible.Acetate activation is accompanied by a transient rise in trehalase activity, which causes a sharp decrease in the reserve substance trehalose followed by an accumulation of glucose in the surrounding medium. At the same time pyruvate, acetaldehyde, ethyl alcohol and lactate can be detected in the culture medium.CO2 production by respiration of externally supplied glucose is predominant in dormant and in germinating spores. During acetate treatment most of the CO2 produced, is supplied by the turnover of endogenous material.High activity of the pentose-phosphate (P-P) pathway occurs in dormant spores, as measured by the C6/C1 ratio. Adding acetate results in a sudden rise in the glycolytic Krebs cycle (EMP) pathway. Afterwards, the P-P pathway also increases and it predominates again during the initial phases of germination.  相似文献   

15.
Synthesis of triacylglycerol requires the glucose‐derived glycerol component, and glucose uptake has been viewed as the rate‐limiting step in glucose metabolism in adipocytes. Furthermore, adipose tissue contains all three isoforms of the glycolytic enzyme phosphofructokinase (PFK). We here report that mice deficient in the muscle isoform PFK‐M have greatly reduced fat stores. Mice with disrupted activity of the PFK‐M distal promoter were obtained from Lexicon Pharmaceuticals, developed from OmniBank OST#56064. Intra‐abdominal fat was measured by magnetic resonance imaging of the methylene proton signal. Lipogenesis from labeled glucose was measured in isolated adipocytes. Lipolysis (glycerol and free fatty acid release) was measured in perifused adipocytes. Intra‐abdominal fat in PFK‐M–deficient female mice (5–10 months old) was 17 ± 3% of that of wild‐type littermates (n = 4; P < 0.02). Epididymal fat weight in 15 animals (7–9.5 months) was 34 ± 4% of control littermate (P < 0.002), with 10–30% lower body weight. Basal and insulin‐stimulated lipogenesis in PFK‐M–deficient epididymal adipocytes was 40% of the rates in cells from heterozygous littermates (n = 3; P < 0.05). The rate of isoproterenol‐stimulated lipolysis in wild‐type adipocytes declined ~10% after 1 h and 50% after 2 h; in PFK‐M–deficient cells it declined much more rapidly, 50% in 1 h and 90% in 2 h, and lipolytic oscillations appeared to be damped (n = 4). These results indicate an important role for PFK‐M in adipose metabolism. This may be related to the ability of this isoform to generate glycolytic oscillations, because such oscillations may enhance the production of the triacylglycerol precursor α‐glycerophosphate.  相似文献   

16.
Fast protein liquid chromatography on Superose 6 of crude extracts from the green alga Chlorella kessleri cultivated autotrophically in white light reveals several peaks with phosphofructokinase (PFK, EC 2.7.1.11) or pyruvate kinase (PK, EC 2.7.1.40) activity with molecular weights larger than the usually reported ones of 320–380 and 240 kDa, respectively. All other glycolytic enzymes are eluted as one peak each with a molecular weight corresponding to data from the literature. Indirect evidence indicates that the various forms of PFK and presumably PK are oligomers. The occurrence of different PFK species depends markedly on growth conditions such as wavelength of light: Red light leads to only one rather large PFK (1,580 kDa), blue light to two smaller species (760 and 360 kDa). All species are probably present in white light-grown cells (1,500, 1,050, 930, 700 and 440 kDa). The various light qualities do not significantly affect all other glycolytic enzymes. PK constantly exhibits four forms with molecular weights of 830, 680, 480, 305 kDa. Experiments with the chlorophyll-free mutant no. 20 of Chlorella kessleri support the assumption that oligomerization of enzymes is characteristic of regulatory enzymes, thereby providing the cell with an additional regulatory means.  相似文献   

17.
Summary Mutants of Saccharomyces cerevisiae without detectable phosphofructokinase activity were isolated. They were partly recessive and belonged to two genes called PFK1 and PFK2. Mutants with a defect in only one of the two genes could not grow when they were transferred from a medium with a nonfermentable carbon source to a medium with glucose and antimycin A, an inhibitor of respiration. However, the same mutants could grow when antimycin A was added to such mutants after they had been adapted to the utilization of glucose. Double mutants with defects in both genes could not grow at all on glucose as the sole carbon source. Mutants with a single defect in gene PFK1 or PFK2 could form ethanol on a glucose medium. However, in contrast to wild-type cells, there was a lag period of about 2 h before ethanol could be formed after transfer from a medium with only nonfermentable carbon sources to a glucose medium. Wild-type cells under the same conditions started to produce ethanol immediately. Mutants with defects in both PFK genes could not form ethanol at all. Mutants without phosphoglucose isomerase or triosephosphate isomerase did not form ethanol either. Double mutants without phosphofructokinase and phosphoglucose isomerase accumulated large amounts of glucose-6-phosphate on a glucose medium. This suggested that the direct oxidation of glucose-6-phosphate could not provide a bypass around the phosphofructokinase reaction. On the other hand, the triosephosphate isomerase reaction was required for ethanol production. Experiments with uniformly labeled glucose and glucose labeled in positions 3 and 4 were used to determine the contribution of the different carbon atoms of glucose to the fermentative production of CO2. With only fermentation operating, only carbon atoms 3 and 4 should contribute to CO2 production. However, wild-type cells produced significant amounts of radioactivity from other carbon atoms and pfk mutants generated CO2 almost equally well from all six carbon atoms of glucose. This suggested that phosphofructokinase is a dispensable enzyme in yeast glycolysis catalyzing only part of the glycolytic flux.  相似文献   

18.
Modulation of glucose metabolic capacity of human preantral follicles in vitro by gonadotropins and intraovarian growth factors was evaluated by monitoring the activities of phosphofructokinase (PFK) and pyruvate kinase (PK), two regulatory enzymes of the glycolytic pathway, and malate dehydrogenase (MDH), a key mitochondrial enzyme of the Krebs cycle. Preantral follicles in classes 1 and 2 from premenopausal women were cultured separately in vitro in the absence or presence of FSH, LH, epidermal growth factor (EGF), insulin-like growth factor (IGF-I), or transforming growth factor beta1 (TGFbeta1) for 24 h. Mitochondrial fraction was separated from the cytosolic fraction, and both fractions were used for enzyme assays. FSH and LH significantly stimulated PFK and PK activities in class 1 and 2 follicles; however, a 170-fold increase in MDH activity was noted for class 2 follicles that were exposed to FSH. Although both EGF and TGFbeta1 stimulated glycolytic and Krebs cycle enzymes for class 1 preantral follicles, TGFbeta1 consistently stimulated the activities of both glycolytic enzymes more than that of EGF. IGF-I induced PK and MDH activities in class 1 follicles but negatively influenced PFK activity for class 1 follicles. In general, only gonadotropins consistently stimulated both glycolytic and Krebs cycle enzyme activities several-fold in class 2 follicles. These results suggest that gonadotropins and ovarian growth factors differentially influence follicular energy-producing capacity from glucose. Moreover, gonadotropins may either directly influence glucose metabolism in class 2 preantral follicles or do so indirectly through factors other than the well-known intraovarian growth factors. Because growth factors modulate granulosa cell mitosis and functionality, their role on energy production may be related to specific cellular activities.  相似文献   

19.
20.
Changes in activities of the glycolytic and pentose phosphate (PP) pathways in glucose catabolism in various parts of the hypocotyls obtained from 4-day-old etiolatedPhaseolus mungo seedlings were investigated by measuring the inhibition rates of respiration by iodoacetate and malonate, and the release of14CO2 from [1-14C]- and [6-14C]glucose. The relative activity of the PP pathway in glucose catabolism was higher in the immature part (Part I) and the aged part (Part V) of the hypocotyls than in the intermediary one (Part III), while the activity of the glycolytic pathway decreased with aging. On a fresh weight basis, the enzyme activities of the glycolytic and PP pathways were higher in Part I than in Parts III and V. On a protein content basis, however, activities of the enzymes of the PP pathway increased with aging and differentiation of the hypocotyls whereas those of the glycolytic pathway decreased. Levels of nicotinamide adenine nucleotides were found to be in the following order: Part I>Part III> Part V for NAD++NADH; Part I>Part V>Part III for NADP++NADPH. The stimulative effect of methylene blue on decreasing the C6/C1 ratio was greater in Part III than in Part I, and No effect was observed in Part V. These data suggest that a decrease in the activity of the glycolytic pathway with aging and differentiation may be due to the decreasing glycolytic enzyme activities and NAD(H) content. The higher activity of the PP pathway in the immature part is attributable to larger amounts of NADP(H) and enzymes of the PP pathway. The greater contribution of the PP pathway to glucose catabolism in the aged part than in the intermediary part seems to results from a more active turnover of NADP and the relatively higher activity of the enzymes of the PP pathway than those of the glycolytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号