首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

2.
Shp2 is a non-receptor protein tyrosine phosphatase containing two Src homology 2 (SH2) domains that is implicated in intracellular signaling events controlling cell proliferation, differentiation and migration. To examine the role of Shp2 in brain development, we created mice with Shp2 selectively deleted in neural stem/progenitor cells. Homozygous mutant mice exhibited early postnatal lethality with defects in neural stem cell self-renewal and neuronal/glial cell fate specification. Here we report a critical role of Shp2 in guiding neuronal cell migration in the cerebellum. In homozygous mutants, we observed reduced and less foliated cerebellum, ectopic presence of external granule cells and mispositioned Purkinje cells, a phenotype very similar to that of mutant mice lacking either SDF-1α or CXCR4. Consistently, Shp2-deficient granule cells failed to migrate toward SDF-1α in an in vitro cell migration assay, and SDF-1α treatment triggered a robust induction of tyrosyl phosphorylation on Shp2. Together, these results suggest that although Shp2 is involved in multiple signaling events during brain development, a prominent role of the phosphatase is to mediate SDF-1α/CXCR4 signal in guiding cerebellar granule cell migration.  相似文献   

3.
4.
The chemokine stromal cell-derived factor 1 (SDF-1) is the natural ligand for CXC chemokine receptor 4 (CXCR4). SDF-1 inhibits infection of CD4+ cells by X4 (CXCR4-dependent) human immunodeficiency virus (HIV) strains. We previously showed that SDF-1 alpha interacts specifically with heparin or heparan sulfates (HSs). Herein, we delimited the boundaries of the HS-binding domain located in the first beta-strand of SDF-1 alpha as the critical residues. We also provide evidence that binding to cell surface heparan sulfate proteoglycans (HSPGs) determines the capacity of SDF-1 alpha to prevent the fusogenic activity of HIV-1 X4 isolates in leukocytes. Indeed, SDF-1 alpha mutants lacking the capacity to interact with HSPGs showed a substantially reduced capacity to prevent cell-to-cell fusion mediated by X4 HIV envelope glycoproteins. Moreover, the enzymatic removal of cell surface HS diminishes the HIV-inhibitory capacity of the chemokine to the levels shown by the HS-binding-disabled mutant counterparts. The mechanisms underlying the optimal HIV-inhibitory activity of SDF-1 alpha when attached to HSPGs were investigated. Combining fluorescence resonance energy transfer and laser confocal microscopy, we demonstrate the concomitant binding of SDF-1 alpha to CXCR4 and HSPGs at the cell membrane. Using FRET between a Texas Red-labeled SDF-1 alpha and an enhanced green fluorescent protein-tagged CXCR4, we show that binding of SDF-1 alpha to cell surface HSPGs modifies neither the kinetics of occupancy nor activation in real time of CXCR4 by the chemokine. Moreover, attachment to HSPGs does not modify the potency of the chemokine to promote internalization of CXCR4. Attachment to cellular HSPGs may co-operate in the optimal anti-HIV activity of SDF-1 alpha by increasing the local concentration of the chemokine in the surrounding environment of CXCR4, thus facilitating sustained occupancy and down-regulation of the HIV coreceptor.  相似文献   

5.
CXCR4 function requires membrane cholesterol: implications for HIV infection   总被引:15,自引:0,他引:15  
HIV requires cholesterol and lipid rafts on target cell membranes for infection. To elucidate a possible mechanism, we determined that cholesterol extraction by hydroxypropyl-beta-cyclodextrin (BCD) inhibits stromal cell-derived factor 1alpha (SDF-1alpha) binding to CXCR4 on T cell lines and PBMCs. Intracellular calcium responses to SDF-1alpha, as well as receptor internalization, were impaired in treated T cells. Loss in ligand binding is likely due to conformational changes in CXCR4 and not increased sensitivity to internalization. SDF-1alpha binding and calcium responses were effectively restored by reloading cholesterol. Immunofluorescence microscopy revealed that SDF-1alpha binding occurred in lipid raft microdomains that contained GM1. CXCR4 surface expression, on the other hand, only partially colocalized with GM1. HIV-1(IIIB) infection assays confirmed the functional loss of CXCR4 in the cell lines tested, Sup-T1 and CEM-NKR-CCR5. These data suggest that cholesterol is essential for CXCR4 conformation and function and that lipid rafts may play a regulatory role in SDF-1alpha signaling.  相似文献   

6.
Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1alpha treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1alpha induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important "cross-talk" between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.  相似文献   

7.
Transmembrane signaling of the CXC chemokine stromal cell-derived factor-1 (SDF-1) is mediated by CXCR4, a G protein-coupled receptor initially identified in leukocytes and shown to serve as a coreceptor for the entry of HIV into lymphocytes. Characterization of SDF-1- and CXCR4-deficient mice has revealed that SDF-1 and CXCR4 are of vital developmental importance. To study the role of the SDF-1/CXCR4-chemokine/receptor system as a regulator of vertebrate development, we isolated and characterized a cDNA encoding SDF-1 of the lower vertebrate Xenopus laevis (xSDF-1). Recombinant xSDF-1 was produced in insect cells, purified, and functionally characterized. Although xSDF-1 is only 64-66% identical with its mammalian counterparts, it is indistinguishable from human (h)SDF-1alpha in terms of activating both X. laevis CXCR4 and hCXCR4. Thus, both xSDF-1 and hSDF-1alpha promoted CXCR4-mediated activation of heterotrimeric G(i2) in a cell-free system and induced release of intracellular calcium ions in and chemotaxis of intact lymphoblastic cells. Analysis of the time course of xSDF-1 mRNA expression during Xenopus embryogenesis revealed a tightly coordinated regulation of xSDF-1 and X. laevis CXCR4. xSDF-1 mRNA was specifically detected in the developing CNS, incipient sensory organs, and the embryonic heart. In Xenopus, CXCR4 mRNA appears to be absent from the heart anlage, but present in neural crest cells. This observation suggests that xSDF-1 expressed in the heart anlage may attract cardiac neural crest cells expressing CXCR4 to migrate to the primordial heart to regulate both septation of the cardiac outflow tract and differentiation of the myocardium during early heart development.  相似文献   

8.
CCR5 and CXC chemokine receptor 4 (CXCR4) are coreceptors for CD4 as defined by HIV-1 glycoprotein (gp) 120 binding. Pretreatment of T cells with gp120 results in modulation of both CCR5 and CXCR4 responsiveness, which is dependent upon p56(lck) enzymatic activity. The recent findings that pretreatment of T cells with a natural CD4 ligand, IL-16, could alter cellular responsiveness to macrophage-inflammatory protein-1ss (MIP-1ss) stimulation, prompted us to investigate whether IL-16 could also alter CXCR4 signaling. These studies demonstrate that IL-16/CD4 signaling in T lymphocytes also results in loss of stromal derived factor-1alpha (SDF-1alpha)/CXCR4-induced chemotaxis; however, unlike MIP-1ss/CCR5, the effects were not reciprocal. There was no effect on eotaxin/CCR3-induced chemotaxis. Desensitization of CXCR4 by IL-16 required at least 10-15 min pretreatment; no modulation of CXCR4 expression was observed, nor was SDF-1alpha binding altered. Using murine T cell hybridomas transfected to express native or mutated forms of CD4, it was determined that IL-16/CD4 induces a p56(lck)-dependent inhibitory signal for CXCR4, which is independent of its tyrosine catalytic activity. By contrast, IL-16/CD4 desensitization of MIP-1ss/CCR5 responses requires p56(lck) enzymatic activity. IL-16/CD4 inhibition of SDF-1alpha/CXCR4 signals requires the presence of the Src homology 3 domain of p56(lck) and most likely involves activation of phosphatidylinositol-3 kinase. These studies indicate the mechanism of CXCR4 receptor desensitization induced by a natural ligand for CD4, IL-16, is distinct from the inhibitory effects induced by either gp120 or IL-16 on CCR5.  相似文献   

9.
We examined the role of chemokine signaling on the lymph node metastasis of oral squamous cell carcinoma (SCC) using lymph node metastatic (HNt and B88) and nonmetastatic oral SCC cells. Of 13 kinds of chemokine receptors examined, only CXCR4 expression was up-regulated in HNt and B88 cells. CXCR4 ligand, stromal-cell-derived factor-1alpha (SDF-1alpha; CXCL12), induced characteristic calcium fluxes and chemotaxis only in CXCR4-expressing cells. CXCR4 expression in metastatic cancer tissue was significantly higher than that in nonmetastatic cancer tissue or normal gingiva. Although SDF-1alpha was undetectable in either oral SCC or normal epithelial cells, submandibular lymph nodes expressed the SDF-1alpha protein, mainly in the stromal cells, but occasionally in metastatic cancer cells. The conditioned medium from lymphatic stromal cells promoted the chemotaxis of B88 cells, which was blocked by the CXCR4 neutralization. SDF-1alpha rapidly activated extracellular signal-regulated kinase (ERK)1/2 and Akt/protein kinase B (PKB), and their synthetic inhibitors attenuated the chemotaxis by SDF-1alpha. SDF-1alpha also activated Src family kinases (SFKs), and its inhibitor PP1 diminished the SDF-1alpha-induced chemotaxis and activation of both ERK1/2 and Akt/PKB. These results indicate that SDF-1/CXCR4 signaling may be involved in the establishment of lymph node metastasis in oral SCC via activation of both ERK1/2 and Akt/PKB induced by SFKs.  相似文献   

10.
The stromal cell-derived factor-1 (SDF-1) is a CXC chemokine, which plays critical roles in migration, proliferation, and differentiation of leukocytes. SDF-1 is the only known ligand of CXCR4, the coreceptor of X4 HIV strains. We show that SDF-1 binds to high- and low-affinity sites on HeLa cells. Coimmunoprecipitation studies demonstrate that glycanated and oligomerized syndecan-4 but neither syndecan-1, syndecan-2, betaglycan, nor CD44 forms complexes with SDF-1 and CXCR4 on these cells as well as on primary lymphocytes or macrophages. Moreover, biotinylated SDF-1 directly binds in a glycosaminoglycans (GAGs)-dependent manner to electroblotted syndecan-4, and colocalization of SDF-1 with syndecan-4 was visualized by confocal microscopy. Glycosaminidases pretreatment of the HeLa cells or the macrophages decreases the binding of syndecan-4 to the complex formed by it and SDF-1. In addition, this treatment also decreases the binding of the chemokine to CXCR4 on the primary macrophages but not on the HeLa cells. Therefore GAGs-dependent binding of SDF-1 to the cells facilitates SDF-1 binding to CXCR4 on primary macrophages but not on HeLa cell line. Finally, an SDF-1-independent heteromeric complex between syndecan-4 and CXCR4 was visualized on HeLa cells by confocal microscopy as well as by electron microscopy. Moreover, syndecan-4 from lymphocytes, monocyte derived-macrophages, and HeLa cells coimmunoprecipitated with CXCR4. This syndecan-4/CXCR4 complex is likely a functional unit involved in SDF-1 binding. The role of these interactions in the pathophysiology of SDF-1 deserves further study.  相似文献   

11.
Stromal derived factor-1 alpha (SDF-1alpha) and its receptor CXCR4 have been shown to play a role in the systematic movement of hematopoietic stem cells (HSC) in the fetal and adult stages of hematopoiesis. Under certain physiological conditions liver oval cells can participate in the regeneration of the liver. We have shown that a percentage of oval cells are of hematopoietic origin. Others have shown that bone marrow derived stem cells can participate in liver regeneration as well. In this study we examined the role of SDF-1alpha and its receptor CXCR4 as a possible mechanism for oval cell activation in oval cell aided liver regeneration. In massive liver injury models where oval cell repair is involved hepatocytes up-regulate the expression of SDF-1alpha, a potent chemoattractant for hematopoietic cells. However, when moderate liver injury occurs, proliferation of resident hepatocytes repairs the injury. Under these conditions SDF-1alpha expression is not up-regulated and oval cells are not activated in the liver. In addition, we show that oval cells express CXCR4, the only known receptor for SDF-1alpha. Lastly, in vitro chemotaxis assays demonstrated that oval cells migrate along a SDF-1alpha gradient which suggests that the SDF-1alpha/CXCR4 interaction is a mechanism by which the oval cell compartment could be activated and possibly recruit a second wave of bone marrow stem cells to the injured liver. In conclusion, these experiments begin to shed light on a possible mechanism, which may someday lead to a better understanding of the hepatic and hematopoietic interaction in oval cell aided liver regeneration.  相似文献   

12.
13.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

14.
Mice genetically deficient in the chemokine receptor CXCR4 or its ligand stromal cell-derived factor (SDF)-1/CXCL12 die perinatally with marked defects in vascularization of the gastrointestinal tract. The aim of this study was to define the expression and angiogenic functions of microvascular CXCR4 and SDF-1/CXCL12 in the human intestinal tract. Studies of human colonic mucosa in vivo and primary cultures of human intestinal microvascular endothelial cells (HIMEC) in vitro showed that the intestinal microvasculature expresses CXCR4 and its cognate ligand SDF-1/CXCL12. Moreover, SDF-1/CXCL12 stimulation of HIMEC triggers CXCR4-linked G proteins, phosphorylates ERK1/2, and activates proliferative and chemotactic responses. Pharmacological studies indicate SDF-1/CXCL12 evokes HIMEC chemotaxis via activation of ERK1/2 and phosphoinositide 3-kinase signaling pathways. Consistent with chemotaxis and proliferation, endothelial tube formation was inhibited by neutralizing CXCR4 or SDF-1/CXCL12 antibodies, as well as the ERK1/2 inhibitor PD-98059. Taken together, these data demonstrate an important mechanistic role for CXCR4 and SDF-1/CXCL12 in regulating angiogenesis within the human intestinal mucosa.  相似文献   

15.
Chemokines are secreted into the tumor microenvironment by tumor-infiltrating inflammatory cells as well as by tumor cells. Chemokine receptors mediate agonist-dependent cell responses, including migration and activation of several signaling pathways. In the present study we show that several human melanoma cell lines and melanoma cells on macroscopically infiltrated lymph nodes express the chemokine receptors CXCR3 and CXCR4. Using the highly invasive melanoma cell line BLM, we demonstrate that the chemokine Mig, a ligand for CXCR3, activates the small GTPases RhoA and Rac1, induces a reorganization of the actin cytoskeleton, and triggers cell chemotaxis and modulation of integrin VLA-5- and VLA-4-dependent cell adhesion to fibronectin. Furthermore, the chemokine SDF-1alpha, the ligand of CXCR4, triggered modulation of beta(1) integrin-dependent melanoma cell adhesion to fibronectin. Additionally, Mig and SDF-1alpha activated MAPKs p44/42 and p38 on melanoma cells. Expression of functional CXCR3 and CXCR4 receptors on melanoma cells indicates that they might contribute to cell motility during invasion as well as to regulation of cell proliferation and survival.  相似文献   

16.
17.
The CXC chemokine stromal cell-derived factor-1alpha (SDF-1) binds to CXCR4, a seven-transmembrane G protein-coupled receptor that plays a critical role in many physiological processes that involve cell migration and cell fate decisions, ranging from stem cell homing, angiogenesis, and neuronal development to immune cell trafficking. CXCR4 is also implicated in various pathological conditions, including metastatic spread and human immunodeficiency virus infection. Although SDF-1-induced cell migration in CXCR4-expressing cells is sensitive to pertussis toxin treatment, hence involving heterotrimeric G proteins of the G(i) family, whether other G proteins participate in the chemotactic response to SDF-1 is still unknown. In this study, we took advantage of the potent chemotactic activity of SDF-1 in Jurkat T-cells to examine the nature of the heterotrimeric G protein subunits contributing to CXCR4-mediated cell migration. We observed that whereas G(i) and Gbetagamma subunits are involved in SDF-1-induced Rac activation and cell migration, CXCR4 can also stimulate Rho potently leading to the phosphorylation of myosin light chain through the Rho effector, Rho kinase, but independently of G(i). Furthermore, we found that Galpha(13) mediates the activation of Rho by CXCR4 and that the functional activity of both Galpha(13) and Rho is required for directional cell migration in response to SDF-1. Collectively, our data indicate that signaling by CXCR4 to Rho through Galpha(13) contributes to cell migration when stimulated by SDF-1, thus identifying the Galpha(13)-Rho signaling axis as a potential pharmacological target in many human diseases that involve the aberrant function of CXCR4.  相似文献   

18.
CXCL12/stromal cell-derived factor-1alpha (SDF-1alpha), a chemokine ligand for the G protein-coupled receptor CXCR4, plays an important role in the directed movement of cells. Many studies have documented the importance of CXCR4 in tumor progression and organ-specific metastasis. Recently, several studies have implicated a role for SDF-1alpha in head and neck squamous cell carcinoma (HNSCC) metastasis, but currently there is little information about how SDF-1alpha promotes HNSCC metastasis. In this report we show that the NF-kappaB signaling pathway is activated in response to SDF-1alpha in HNSCC while primary and immortalized keratinocytes show no SDF-1alpha-mediated NF-kappaB activity. We found that SDF-1alpha-mediated NF-kappaB signaling is independent of phosphoinositide 3-kinase/Akt and ERK/MAPK pathways. We observed that SDF-1alpha induces IkappaBalpha phosphorylation and degradation and the nuclear translocation of NF-kappaB in HNSCC cell lines, suggesting that SDF-1alpha activates the classical NF-kappaB signaling pathway. Contrary to previous reports, SDF-1alpha-induced NF-kappaB activation is not mediated by tumor necrosis factor alpha. Furthermore, blocking the NF-kappaB signaling pathway with an IKKbeta inhibitor significantly reduces SDF-1alpha-mediated HNSCC invasion. Taken together, our data suggest SDF-1alpha/CXCR4 may promote HNSCC invasion and metastasis by activating NF-kappaB and that targeting NF-kappaB may provide therapeutic opportunities in preventing HNSCC metastasis mediated by SDF-1alpha.  相似文献   

19.
CXC chemokine receptor 4 expression and function in human astroglioma cells   总被引:7,自引:0,他引:7  
Chemokines constitute a superfamily of proteins that function as chemoattractants and activators of leukocytes. Astrocytes, the major glial cell type in the CNS, are a source of chemokines within the diseased brain. Specifically, we have shown that primary human astrocytes and human astroglioma cell lines produce the CXC chemokines IFN-gamma-inducible protein-10 and IL-8 and the CC chemokines monocyte chemoattractant protein-1 and RANTES in response to stimuli such as TNF-alpha, IL-1beta, and IFN-gamma. In this study, we investigated chemokine receptor expression and function on human astroglioma cells. Enhancement of CXC chemokine receptor 4 (CXCR4) mRNA expression was observed upon treatment with the cytokines TNF-alpha and IL-1beta. The peak of CXCR4 expression in response to TNF-alpha and IL-1beta was 8 and 4 h, respectively. CXCR4 protein expression was also enhanced upon treatment with TNF-alpha and IL-1beta (2- to 3-fold). To study the functional relevance of CXCR4 expression, stable astroglioma transfectants expressing high levels of CXCR4 were generated. Stimulation of cells with the ligand for CXCR4, stromal cell-derived factor-1alpha (SDF-1alpha), resulted in an elevation in intracellular Ca(2+) concentration and activation of the mitogen-activated protein kinase cascade, specifically, extracellular signal-regulated kinase 2 (ERK2) mitogen-activated protein kinase. Of most interest, SDF-1alpha treatment induced expression of the chemokines monocyte chemoattractant protein-1, IL-8, and IFN-gamma-inducible protein-10. SDF-1alpha-induced chemokine expression was abrogated upon inclusion of U0126, a pharmacological inhibitor of ERK1/2, indicating that the ERK signaling cascade is involved in this response. Collectively, these data suggest that CXCR4-mediated signaling pathways in astroglioma cells may be another mechanism for these cells to express chemokines involved in angiogenesis and inflammation.  相似文献   

20.
The interaction between the integrin alpha(4)beta(7) and its ligand, mucosal addressin cell adhesion molecule-1, on high endothelial venules represents a key adhesion event during lymphocyte homing to secondary lymphoid tissue. Stromal cell-derived factor-1alpha (SDF-1alpha) is a chemokine that attracts T and B lymphocytes and has been hypothesized to be involved in lymphocyte homing. In this work we show that alpha(4)beta(7)-mediated adhesion of CD4(+) T lymphocytes and the RPMI 8866 cell line to mucosal addressin cell adhesion molecule-1 was up-regulated by SDF-1alpha in both static adhesion and cell detachment under shear stress assays. Both naive and memory phenotype CD4(+) T cells were targets of SDF-1alpha-triggered increased adhesion. In addition, SDF-1alpha augmented alpha(4)beta(7)-dependent adhesion of RPMI 8866 cells to connecting segment-1 of fibronectin. While pertussis toxin totally blocked chemotaxis of CD4(+) and RPMI 8866 cells to SDF-1alpha, enhanced alpha(4)beta(7)-dependent adhesion triggered by this chemokine was partially inhibited, indicating the participation of Galpha(i)-dependent as well as Galpha(i)-independent signaling. Accordingly, we show that SDF-1alpha induced a rapid and transient association between its receptor CXCR4 and Galpha(i), whereas association of pertussis toxin-insensitive Galpha(13) with CXCR4 was slower and of a lesser extent. SDF-1alpha also activated the small GTPases RhoA and Rac1, and inhibition of RhoA activation reduced the up-regulation of alpha(4)beta(7)-mediated lymphocyte adhesion in response to SDF-1alpha, suggesting that activation of RhoA could play an important role in the enhanced adhesion. These data indicate that up-regulation by SDF-1alpha of lymphocyte adhesion mediated by alpha(4)beta(7) could contribute to lymphocyte homing to secondary lymphoid tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号