首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

It is demonstrated that poly(dG-ethyl5dC) adopts Z form in low-salt solution like poly(dGmethyl5dC). Its existence is, however, not contingent on the presence of divalent cations in the polynucleotide solution. The Z form is transformed into B form below room temperature. The arising B form cannot be transformed back into Z form by millimolar MgCl2 concentrations. On the contrary, the addition of MgCl2 at room temperature converts the low-salt Z form of poly(dG-ethyl5dC) into B form. It follows from the results that Z form is a stable DNA conformation not only at high but even at low ionic strengths.  相似文献   

2.
It is shown, using circular dichroism spectroscopy, that poly(dI-dC) is capable to isomerize into both Z-DNA and A-DNA in concentrated NaCl + NiCl2 and trifluoroethanol solutions, respectively. This polynucleotide also undergoes a cooperative, two-state transition in ethanol into a structure which most probably is a canonical B-DNA. This implies that the conformation of poly(dI-dC) is unusual in low-salt aqueous solution. The canonical B-DNA is also adopted by poly(dI-methyl5dC) in trifluoroethanol while this polynucleotide adopts Z-DNA not only in NaCl + NiCl2 but also in the presence of MgCl2. Poly(dI-methyl5dC) partially adopts X-DNA in concentrated CsF and mainly ethanolic solutions. Poly(dI-bromo5dC) isomerizes into Z-DNA not only in concentrated NaCl even in the absence of NiCl2 but also in concentrated MgCl2. This polynucleotide transforms between two distinct variants of Z-DNA in ethanol or trifluoroethanol solutions.  相似文献   

3.
The B and the Z forms of the DNA hexamers d(m5C-G)3 and d(br5C-G)3 were investigated by means of NMR spectroscopy. It is demonstrated that the low-salt form of d(m5C-G)3 is a B DNA structure. The form, which becomes increasingly predominant when increasing amounts of MgCl2 and/or methanol are added to the solution, has Z DNA characteristics. It is shown that the major geometrical features of the Z form of d(m5C-G)3 in the crystal structure are maintained in solution, with the dC residues S sugar conformation, gamma + and the base in the anti orientation and the dG residues N (except the 3'-terminal residue), gamma t and syn. Neither the Z form of the methylated nor that of the brominated compound resembles the Z' form, in which the deoxy guanosine sugar rings adopt a C1'-exo conformation. Substitution of m5C by br5C causes no perceptible conformational changes in either the B or in the Z forms.  相似文献   

4.
The physical and covalent binding of the carcinogen benzo(a)pyrene-7,8-diol-9,10-oxide (BaPDE) to poly(dG-dC).(dG-dC) and poly(dG-m5dC).(dG-m5dC) in the B and Z forms were studied utilizing absorbance, fluorescence and linear dichroism techniques. In the case of poly(dG-dC).(dG-dC) the decrease in the covalent binding of BaPDE with increasing NaCl concentration (0.1-4 M) as the B form is transformed to the Z form is attributed to the effects of high ionic strengths on the reactivity and physical binding of BaPDE to the polynucleotides; these effects tend to obscure differences in reactivities with the B and Z forms of the nucleic acids. In the case of poly(dG-m5dC).(dG-m5dC) the B-to-Z transition is induced at low ionic strength (2 mM NaCl + 10 microM Co(NH3)6Cl3) and the covalent binding is found to be 2-3-times lower to the Z form than to the B form. Physical binding of BaPDE by intercalation, which precedes the covalent binding reaction, is significantly lower in the Z form than in the B form, thus accounting, in part, for the lower covalent binding. The linear dichroism characteristics of BaPDE covalently bound to the Z and B forms of poly(dG-m5dC).(dG-m5dC) are consistent with nonintercalative, probably external conformations of the aromatic pyrenyl residues.  相似文献   

5.
J M Malinge  M Leng 《The EMBO journal》1984,3(6):1273-1279
The nature of the adducts and the conformational changes produced in poly(dG-m5dC).poly(dG-m5dC) by cis-diamminedichloroplatinum(II) (cisPt) have been studied. In the reaction of cisPt and B-DNA, the main adduct is bidentate and arises from an intrastrand cross-link between two guanine residues separated by a cytosine. This was deduced from the study of the compounds by t.l.c. after acid hydrolysis of the polymer. The platinated polymer is not digested by S1 nuclease. The antibodies to Z-DNA bind to the platinated polymer with a smaller affinity than to poly (dG-br5dC).poly(dG-br5dC). The c.d. spectrum differs from that of poly(dG-br5dC).poly(dG-br5dC) or poly(dG-m5dC).poly-(dG-m5dC) in Z conformation. It is concluded that the bidentate adduct induces a conformational change from the B form towards a distorted Z form. In the reaction of cisPt and Z-DNA, a monodentate adduct is formed. This adduct stabilizes the Z conformation as shown by c.d. and binding to the anti-Z-DNA antibodies. At room temperature, the second function of the drug can still react with small ligands such as NH4HCO3. By heating, the second function reacts with a guanine residue. A bidentate adduct is formed as in the reaction of cisPt and B-DNA and it induces a transition from the Z form to the distorted Z form.  相似文献   

6.
The equilibrium binding of ethidium to poly(dG-dC) and poly(dG-m5dC) under conditions favoring B and Z forms was investigated with fluorescence-detected circular dichroism (FDCD) and optical titration methods. FDCD spectra indicate a similar geometry for the intercalated ethidium under both B- and Z-form conditions, even at low levels of bound ethidium. The magnitude of the 310-330-nm FDCD band as a function of the bound drug to base pair ratio (r) indicates ethidium binds to poly(dG-dC) in 4.4 M NaCl and to poly(dG-m5dC) in 25 mM MgCl2 by clustering. Under these conditions, circular dichroism spectra indicate the polymer is largely Z form. Thus, it appears ethidium clusters into regions it has induced into a right-handed form. For all conditions studied, the FDCD spectra provided no evidence for a left-handed binding site. Under B-form conditions, binding is random.  相似文献   

7.
Conformational lability of poly(dG-m5dC):poly(dG-m5dC).   总被引:2,自引:2,他引:0       下载免费PDF全文
F M Chen 《Nucleic acids research》1986,14(12):5081-5097
The remarkable conformational lability of poly(dG-m5dC):poly(dG-m5dC) is demonstrated by the observation of an acid-mediated conformational hysteresis. An acid-mediated Z conformation that exists in solutions containing low sodium concentrations that would normally favor the B conformation is described in this report. This Z conformation is reached by an acid-base titration of a B-poly(dG-m5dC):poly(dG-m5dC) solution which is not far from the B-Z transition midpoint. The resulting Z conformation is thermally very stable, with direct melting into single strands at approximately 100 degrees C. In contrast, the B form DNA, initially in solutions of the same ionic strength but without exposure to acidic pH, exhibits a biphasic melting profile, with conversion into the Z form (with high cooperativity) prior to an eventual denaturation into single strands at around 100 degrees C. Cooling experiments reveal that such biphasic transitions are quite reversible. The transition midpoint for the thermally poised B to Z transformation depends strongly on the NaCl concentration and varies with sample batch. The acid-mediated Z form binds ethidium more weakly than its B counterpart, and the ethidium induced Z to B conversion occurs in a step-wise (non-allosteric) fashion without the requirement of a threshold concentration. The acid-mediated as well as the thermally poised Z conformations are reversed by the addition of EDTA, suggesting the involvement of trace amounts of multivalent metal ions.  相似文献   

8.
Ethidium dimer is shown to bind by intercalation, almost equally well, to the B and Z form of poly[(dG-m5dC)].poly[(dG-m5dC)], whereas the ethidium monomer shows a strong preference for the B form. The hydrogen-deuterium (H-D) exchange kinetics of the ethidium dimer bound to the B and Z form of poly [(dG-m5dC)].poly[(dG-m5dC)] could then be compared. The kinetics of the H-D exchange were strikingly slower when the dye was bound to Z DNA as compared to B DNA. The exchange kinetics were also modified when ethidium dimer was bound to tRNA and to a triple stranded structure. It is proposed that a dynamic fluctuation at the level of the nucleic acid could modulate the dynamic fluctuation at the level of the bound ligand.  相似文献   

9.
Using a combination of spectroscopic techniques, quasi-elastic laser light scattering (QLS), and electron microscopy (EM), we have been able to show that the B to Z transition of poly(dG-m5dC) X poly(dG-m5dC) is accompanied by extensive condensation of the DNA in both low and high ionic strength buffers. At low concentrations of NaCl (2 mM Na+), an intermediate rodlike form, which exhibits a circular dichroism (CD) spectrum characteristic of an equimolar mixture of B and Z forms, is observed. This is produced by the orderly self-association of about four molecules of the polymer after prolonged incubation of a concentrated solution at 4 degrees C. On addition of 5 microM Co(NH3)63+, the CD spectrum of the intermediate changes to that of the Z form, which is visualized as a dense population of discrete toroids on an EM grid stained with uranyl acetate. On the other hand, addition of NaCl to a solution of poly(dG-m5dC) X poly(dG-m5dC) in the absence of any multivalent ion condenses the polymer to toroidal structures at the midpoint (0.75 M NaCl) of the B to Z transition. Further addition of NaCl unfolds these toroids to rodlike structures, which show characteristic Z-form CD spectra. These results show that Z DNA can take up a variety of tertiary structural forms and indicate that its inverted CD spectrum is due to its left-handed helical sense rather than to differential scattering artifacts.  相似文献   

10.
Chromomycin A3 binds to left-handed poly(dG-m5dC)   总被引:1,自引:0,他引:1  
The interaction of chromomycin A3 (an antitumor antibiotic) with right-handed and left-handed polynucleotides has been studied by absorbance, fluorescence, circular dichroism, 31P-NMR and 1H-NMR techniques. Binding to either the B form of poly(dG-dC) or the Z form of poly(dG-m5dC) shifts the absorbance maximum to higher wavelength and enhances the fluorescence of the drug. Circular dichroic spectra of solutions containing various concentrations of chromomycin A3 and fixed concentrations of either B or Z polynucleotides show well defined isoelliptic points at similar wavelengths. At the isoelliptic point, the drug complex with B DNA exhibits positive ellipticity while with Z DNA it exhibits negative ellipticity. 31P-NMR spectra of the chromomycin A3 complex with the Z form of poly(dG-m5dC) demonstrate that the Z conformation is retained in the drug complex up to one molecule drug/four base pairs. At Mg2+ concentrations lower than that necessary to stabilize the left-handed conformation of poly(dG-m5dC) alone, 31P analysis shows that chromomycin A3 can bind simultaneously to both the B and Z conformations of poly(dG-m5dC), with no effect on the B-Z equilibrium. These data demonstrate that chromomycin A3 binds to left-handed poly(dG-m5dC) with retention of the left-handed conformation up to saturating drug concentrations.  相似文献   

11.
Spectroscopic studies on solutions of poly(dG-m5dC) over a wide range of salt concentration are presented. Low salt solutions [( Na+]) less than 2 mM) of poly(dG-m5dC) produce circular dichroism (CD) spectra typical of the left-handed, Z form at high salt [( Na+] = 1.75 M). Solutions of poly(dG-m5dC) at intermediate salt concentrations, e.g., 142 mM, yield CD spectra characteristic of the right-handed, B conformation. 31p NMR spectra of the low salt form of poly(dG-m5dC) reveal two well separated peaks, split by 1.4 ppm, consistent with a dinucleotide repeat. Kinetic studies show that the transition from the low salt form to teh right-handed B form is slow, as expected for a major conformational change. These results suggest that the Z conformation in poly(dG-m5dC) can be stabilized at very low salt as well as at high salt.  相似文献   

12.
Deoxy-5-azacytidine 5'-triphosphate was synthesized and used as a substrate for the enzymatic synthesis of the polynucleotide poly[d(G-z5C)]. Whereas the triphosphate decomposes in solution, the azacytosine analogue incorporated into DNA is stable under conditions preserving the double-helical structure. Poly[d(G-z5C)] undergoes the transition to the left-handed Z conformation at salt (NaCl and MgCl2) concentrations approximately 30% higher than those required for unsubstituted poly[d(G-C)]. However, the incorporation of azacytidine potentiates the formation at room temperature of the Z helix stabilized by the transition metal Mn2+; in the case of poly[d(G-C)], a heating step is required. The spectral properties of the two polymers in the B and Z forms are similar. Both left-handed forms are recognized by anti-Z DNA immunoglobulins, indicating that the DNAs bear common antigenic features. Poly[d(G-z5C)] is not a substrate for the DNA cytosine 5-methyltransferase from human placenta. It is a potent inhibitor of the enzyme when tested in a competitive binding assay. These results are compatible with a very strong, possibly covalent, mode of interaction between methyltransferases and DNA containing 5-azacytosine.  相似文献   

13.
J Ausio  G Zhou  K van Holde 《Biochemistry》1987,26(18):5595-5599
Polynucleosomes with poly(dG-m5dC).poly(dG-m5dC) have been reconstituted, and well-defined nucleosome core particles from these have been prepared. Upon addition of MgCl2 to the levels used to induce the B to Z transition in this highly methylated DNA, significant changes in the circular dichroism spectrum are observed in solutions of these particles. However, such core particles also exhibit a noticeable instability when compared to chicken erythrocyte core particles under the same conditions. The change in circular dichroism can be entirely accounted for on the assumption that only free nucleotide, released by core particle dissociation, undergoes the B----Z transition. Therefore, no evidence has been found for "Z nucleosomes" in these solutions. In fact, the histone-DNA interaction in the nucelosome seems to partially inhibit the B to Z transition of the DNA. The analysis of our results is consistent with a model in which all of the DNA that remains bound to the histone octamer retains the B form.  相似文献   

14.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7462-7471
The equilibrium binding of ethidium to the right-handed (B) and left-handed (Z) forms of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) was investigated by optical and phase partition techniques. Ethidium binds to the polynucleotides in a noncooperative manner under B-form conditions, in sharp contrast to highly cooperative binding under Z-form conditions. Correlation of binding isotherms with circular dichroism (CD) data indicates that the cooperative binding of ethidium under Z-form conditions is associated with a sequential conversion of the polymer from a left-handed to a right-handed conformation. Determination of bound drug concentrations by various titration techniques and the measurement of circular dichroism spectra have enabled us to calculate the number of base pairs of left-handed DNA that adopt a right-handed conformation for each bound drug; 3-4 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to the right-handed form for each bound ethidium, while approximately 25 and 7 base pairs switch conformations for each bound ethidium in complexes with poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2, respectively. The induced ellipticity at 320 nm for the ethidium-poly(dG-dC).poly(dG-dC) complex in 4.4 M NaCl indicates that the right-handed regions are nearly saturated with ethidium even though the overall level of saturation is very low. The circular dichroism data indicate that ethidium intercalates to form a right-handed-bound drug region, even at low r values where the CD spectra show that the majority of the polymer is in a left-handed conformation.  相似文献   

15.
G T Walker  M P Stone  T R Krugh 《Biochemistry》1985,24(25):7471-7479
The interaction of actinomycin D and actinomine with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) under B- and Z-form conditions has been investigated by optical and phase partition techniques. Circular dichroism data show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation. Actinomycin D binds in a cooperative manner to poly(dG-dC).poly(dG-dC) under both B-form and Z-form conditions. Analysis of the circular dichroism data shows that 5 +/- 1 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl switch to a right-handed conformation for each bound actinomycin D. When the left-handed form of poly(dG-dC).poly(dG-dC) is stabilized by the presence of 40 microM [Co(NH3)6]Cl3, 25 +/- 5 base pairs switch from a left-handed to a right-handed conformation for each bound actinomycin D. Actinomine binds cooperatively to left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and to left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. Actinomine does not bind to left-handed poly(dG-dC).poly(dG-dC) in 4.4 M NaCl at concentrations as high as 100 microM. Each bound actinomine converts 11 +/- 3 base pairs of left-handed poly(dG-dC).poly(dG-dC) in 40 microM [Co(NH3)6]Cl3 and 7 +/- 2 base pairs of left-handed poly(dG-m5dC).poly(dG-m5dC) in 2 mM MgCl2. The binding isotherm data also indicate that the binding site has a right-handed conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
P L Gilbert  D E Graves  J B Chaires 《Biochemistry》1991,30(45):10925-10931
The effects of covalent modification of poly(dGdC).poly(dGdC) and poly(dGm5dC).poly(dGm5dC) by ethidium monoazide (a photoreactive analogue of ethidium) on the salt-induced B to Z transition are examined. Earlier studies have shown ethidium monoazide to bind DNA (in the absence of light) in a manner identical to that of the parent ethidium bromide. Photolysis of the ethidium monoazide-DNA complex with visible light results in the covalent attachment of the photoreactive analogue to the DNA. This ability to form a covalent adduct was utilized to probe the effects of an intercalating irreversibly bound adduct on the salt-induced B to Z transition of the poly(dGdC).poly(dGdC) and poly(dGm5dC).poly(dGm5dC) polynucleotides. In the absence of drug, the salt-induced transition from the B to Z structure occurs in a highly cooperative manner. In contrast, this cooperativity is diminished as the concentration of covalently attached drug is increased. The degree of inhibition of the B to Z transition is quantitated as a function of the concentration of covalently attached drug. At a concentration of one drug bound per four base pairs for poly(dGdC).poly(dGdC) and seven base pairs for poly(dGm5dC).poly(dGm5dC), total inhibition of this transition is achieved. Lower concentrations of bound drug were effective in the partial inhibition of this transition. The effects of the covalently bound intercalator on the energetics of the B to Z transition were determined and demonstrated that the adduct is effective in locking the alternating copolymer in a right-handed conformation under high salt conditions.  相似文献   

17.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

18.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

19.
It is shown that there are three parts on the potentiometric titration curves of isoionic solutions of poly(A) ascribed to the three protonated structures. Double-helical protonated structures are especially stable in isoionic solution. These parts on potentiometric curves are attributed to the single-stranded poly(A), to the completely protonated double-stranded poly(A+).poly(A+), and to the semiprotonated poly(A+).poly(A) structures: D, A, B forms of poly(A), respectively. pK0 values of these forms are calculated. The D form portion is found to be about 18% in isoionic solution, 40% in KCl solution (from 0.01 to 1.0 M), 40% in solution, containing 1.2 X 10(-3) M MgCl2 and 70% in 8 X 10(-4) M MgCl2 solution. The increase of MgCl2 concentration up to 8 X 10(-4) M leads to complete degradation of the double-helical structure. Only single-stranded D form exists in 5 X 10(-3) M MgCl2 solution. About 5-7% of all protons become inaccessible for titration in all solutions containing KCl and in the presence of small amounts of MgCl2. This phenomenon can not be explained by aggregation of poly(A), because all protons become accessible for titration in more concentrated MgCl2 solution when aggregation of poly(A) is significant and accompanied by the precipitation of sediment insoluble in NaOH. The supposition is made, that unprotonated double-stranded poly(A) can exist in salt-free solution at neutral pH. It is this form that is protonated with decrease of pH.  相似文献   

20.
Cis-dichlorodiammine platinum (II) has been reacted with synthetic polynucleotides either in B or in Z conformation. The binding of cis-dichlorodiammine platinum (II) stabilizes the Z conformation when reacted with poly (dG-m5dC) ·poly (dG-m5dC) in the Z conformation as shown by circular dichroism and by the antibodies to Z-DNA. On the other hand, the binding of cis-dichlorodiammine platinum (II) stabilizes a new conformation when reacted with poly(dG-dC)·poly(dG-dC) or poly (dG-m5dC)·poly(dG-m5dC) in the B conformation. The antibodies to Z-DNA bind to these platinated polynucleotides. In rabbits, the injection of platinated poly (dG-dC) poly (dG-dC) induces the synthesis of antibodies which recognize Z-DNA. In low salt conditions, the circular dichroism spectra of these platinated polynucleotides differ from those of B-DNA or Z-DNA. The characteristic31P nuclear magnetic resonance spectrum of Z-DNA is not detected. It appears only at high ionic strength, as a component of a more complex spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号