首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emissions of nitrous oxide (N2O) from the soil following simulated nitrogen (N) deposition in a disturbed (pine), a rehabilitated (pine and broadleaf mixed) and a mature (monsoon evergreen broadleaf) tropical forest in southern China were studied. The following hypotheses were tested: (1) addition of N will increase soil N2O emission in tropical forests; and (2) any observed increase will be more pronounced in the mature forest than in the disturbed or rehabilitated forest due to the relatively high initial soil N concentration in the mature forest. The experiment was designed with four N treatment levels (three replicates; 0, 50, 100, 150 kg N ha−1 year−1 for C (Control), LN (Low-N), MN (Medium-N), and HN (High-N) treatment, respectively) in the mature forest, but only three levels in the disturbed and rehabilitated forests (C, LN and MN). Between October 2005 to September 2006, soil N2O flux was measured using static chamber and gas chromatography methodology. Nitrogen had been applied previously to the plots since July 2003 and continued during soil N2O flux measurement period. The annual mean rates of soil N2O emission in the C plots were 24.1 ± 1.5, 26.2 ± 1.4, and 29.3 ± 1.6 μg N2O–N m−2 h−1 in the disturbed, rehabilitated and mature forest, respectively. There was a significant increase in soil N2O emission following N additions in the mature forest (38%, 41%, and 58% when compared to the C plots for the LN, MN, and HN plots, respectively). In the disturbed forest a significant increase (35%) was observed in the MN plots, but not in the LN plots. The rehabilitated forest showed no significant response to N additions. Increases in soil N2O emission occurred primarily in the cool-dry season (November, December and January). Our results suggest that the response of soil N2O emission to N deposition in tropical forests in southern China may vary depending on the soil N status and land-use history of the forest.  相似文献   

2.
A 2-year study was conducted to investigate the potential of no-till cropping systems to reduce N2O and NO emissions under different N application rates in an irrigated corn field in northeastern Colorado. Flux measurements were begun in the spring of 2003, using vented (N2O) and dynamic (NO) chambers, one to three times per week, year round, within plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and no-till (NT). Plots were fertilized at planting in late April with rates of 0, 134 and 224 kg N ha−1 and corn was harvested in late October or early November each year. N2O and NO fluxes increased linearly with N application rate in both years. Compared with CT, NT did not significantly affect the emission of N2O but resulted in much lower emission of NO. In 2003 and 2004 corn growing seasons, the increase in N2O-N emitted per kg ha−1 of fertilizer N added was 14.5 and 4.1 g ha−1 for CT, and 11.2 and 5.5 g ha−1 for NT, respectively. However, the increase in NO-N emitted per kg ha−1 of fertilizer N added was only 3.6 and 7.4 g ha−1 for CT and 1.6 and 2.0 g ha−1 for NT in 2003 and 2004, respectively. In the fallow season (November 2003 to April 2004), much greater N2O (2.0–3.1 times) and NO (13.1–16.8 times) were emitted from CT than from NT although previous N application did not show obvious carry-over effect on both gas emissions. Results from this study reveal that NT has potential to reduce NO emission without an obvious change in N2O emission under continuous irrigated corn cropping compared to CT.  相似文献   

3.
Rates of soil respiration (CO2 effluxes), subsurface pore gas CO2/O2 concentrations, soil temperature and soil water content were measured for 15 months in two temperate and contrasting Danish forest ecosystems: beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Soil CO2 effluxes showed a distinct seasonal trend in the range of 0.48–3.3 μmol CO2 m−2 s−1 for beech and 0.50–2.92 μmol CO2 m−2 s−1 for spruce and were well-correlated with near-surface soil temperatures. The soil organic C-stock (upper 1 m including the O-horizon) was higher in the spruce stand (184±23 Mg C ha−1) compared to the beech stand (93±19 Mg C ha−1) and resulted in a faster turnover time as calculated by mass/flux in soil beneath the beech stand (28 years) compared to spruce stand (60 years). Observed soil CO2 concentrations and effluxes were simulated using a Fickian diffusion-reaction model based on vertical CO2 production rates and soil diffusivity. Temporal trends were simulated on the basis of observed trends in the distribution of soil water, temperature, and live roots as well as temperature and water content sensitivity functions. These functions were established based on controlled laboratory incubation experiments. The model was successfully validated against observed soil CO2 effluxes and concentrations and revealed that temporal trends generally could be linked to variations in subsurface CO2 production rates and diffusion over time and with depths. However, periods with exceptionally high CO2 effluxes (> 20 μmol CO2 m−2 s−1) were noted in March 2000 in relation to drying after heavy rain and after the removal of snow from collars. Both cases were considered non-steady state and could not be simulated.  相似文献   

4.
Soil from a pulse cultivated farmers land of Odisha, India, have been subjected to incubation studies for 40 consecutive days, to establish the impact of various nitrogenous fertilizers and water filled pore space (WFPS) on green house gas emission (N2O & CH4). C2H2 inhibition technique was followed to have a comprehensive understanding about the individual contribution of nitrifiers and denitrifiers towards the emission of N2O. Nevertheless, low concentration of C2H2 (5 ml: flow rate 0.1 kg/cm2) is hypothesized to partially impede the metabolic pathways of denitrifying bacterial population, thus reducing the overall N2O emission rate. Different soil parameters of the experimental soil such as moisture, total organic carbon, ammonium content and nitrate–nitrogen contents were measured at regular intervals. Application of external N-sources under different WFPS conditions revealed the diverse role played by the indigenous soil microorganism towards green house gas emission. Isolation of heterotrophic microorganisms (Pseudomonas) from the soil samples, further supported the fact that denitrification might be prevailing during specific conditions thus contributing to N2O emission. Statistical analysis showed that WFPS was the most influential parameter affecting N2O formation in soil in absence of an inhibitor like C2H2.  相似文献   

5.
The Seine River estuary (France) is the receptacle of a drainage basin characterised by high population density, heavy industrial activity and intensive agriculture. Whereas nitrate concentrations are high due to diffuse sources in the upstream drainage basin, ammonium mainly originates from the effluents of the Achères wastewater treatment plant (WWTP) downstream from Paris and its suburbs (6.5 million equivalent-inhabitants). Ammonium is mostly nitrified in the tidal freshwater estuary and nitrification causes a strong summer oxygen deficit. Average longitudinal summer profiles of oxygen and nitrogen concentrations for two periods, between 1993–1997 and 1998–2003 in dry hydrological conditions (excluding the wet years 2000 and 2001) clearly reflect the changes due to the improved treatment of wastewater from Paris and its suburbs. On the basis of daily water flux data and twice monthly nitrogen measurements at the boundaries of the upstream freshwater estuarine section (108 km), we calculated nitrification and denitrification fluxes, whose annual averages were 43 and 71 × 103 kg N d−1 respectively from 1993 to 2003, with summer values (July–September) representing 73 and 57% of the annual fluxes, respectively. The degree of denitrification in the upper estuary appears to be closely related to the nitrification, itself more loosely related to the amount of reduced nitrogen (Kjeldahl) brought by the treated effluents from the Achères WWTP. We estimated the total N2O emissions to about 40 kg N d−1 (25–60 kg N d−1) in the same sector.  相似文献   

6.
In this paper we discuss three topics concerning N2O emissions from agricultural systems. First, we present an appraisal of N2O emissions from agricultural soils (Assessment). Secondly, we discuss some recent efforts to improve N2O flux estimates in agricultural fields (Measurement), and finally, we relate recent studies which use nitrification inhibitors to decrease N2O emissions from N-fertilized fields (Mitigation).To assess the global emission of N2O from agricultural soils, the total flux should represent N2O from all possible sources; native soil N, N from recent atmospheric deposition, past years fertilization, N from crop residues, N2O from subsurface aquifers below the study area, and current N fertilization. Of these N sources only synthetic fertilizer and animal manures and the area of fields cropped with legumes have sufficient global data to estimate their input for N2O production. The assessment of direct and indirect N2O emissions we present was made by multiplying the amount of fertilizer N applied to agricultural lands by 2% and the area of land cropped to legumes by 4 kg N2O-N ha-1. No regard to method of N application, type of N, crop, climate or soil was given in these calculations, because the data are not available to include these variables in large scale assessments. Improved assessments should include these variables and should be used to drive process models for field, area, region and global scales.Several N2O flux measurement techniques have been used in recent field studies which utilize small and ultralarge chambers and micrometeorological along with new analytical techniques to measure N2O fluxes. These studies reveal that it is not the measurement technique that is providing much of the uncertainty in N2O flux values found in the literature but rather the diverse combinations of physical and biological factors which control gas fluxes. A careful comparison of published literature narrows the range of observed fluxes as noted in the section on assessment. An array of careful field studies which compare a series of crops, fertilizer sources, and management techniques in controlled parallel experiments throughout the calendar year are needed to improve flux estimates and decrease uncertainty in prediction capability.There are a variety of management techniques which should conserve N and decrease the amount of N application needed to grow crops and to limit N2O emissions. Using nitrification inhibitors is an option for decreasing fertilizer N use and additionally directly mitigating N2O emissions. Case studies are presented which demonstrate the potential for using nitrification inhibitors to limit N2O emissions from agricultural soils. Inhibitors may be selected for climatic conditions and type of cropping system as well as the type of nitrogen (solid mineral N, mineral N in solution, or organic waste materials) and applied with the fertilizers.  相似文献   

7.
The effects of continuous and intermittent feeding strategies on nitrogen removal and N2O emission from surface flow and subsurface flow constructed wetlands were evaluated in this study. Microcosm wetlands planted with Phragmites australis were constructed and operated with different feeding strategies for the 4-month experiment. Results showed the intermittent feeding strategy could enhance the removal of ammonium effectively in the subsurface flow constructed wetlands, although it had no significant effect for the surface flow wetlands. And the intermittent feeding mode could promote the emission of N2O. The amount of N2O-N emission from the subsurface flow constructed wetlands with intermittent feeding mode was about 5 times higher than that with continuous feeding strategy and the emission rate ranged from 0.09 ± 0.03 to 7.33 ± 1.49 mg/m2/h. Compared with the surface flow constructed wetlands, the N2O emission in the subsurface flow constructed wetlands was affected significantly by the intermittent feeding mode.  相似文献   

8.
N2O production from denitrification in soils contributes to the enhanced greenhouse effect and the destruction of the stratospheric ozone. Ungulate grazing affects denitrification and the production of N2O. The short-term effect of grazing on denitrification and N2O production has been examined in several grassland ecosystems. However, the effects of long-term grazing have rarely been studied. We measured denitrification and N2O production during the 2005 and 2006 growing seasons in a long-term (17 years) experiment that had five grazing intensities (GI; 0.00, 1.33, 2.67, 4.00 and 5.33 sheep ha−1). We found that denitrification and N2O production rates were seasonally variable during the measurement period, with higher values observed in summer and lower values found in spring and autumn. The grazed treatments resulted in decreased denitrification and N2O production, primarily due to the reduced soil nitrate concentration and organic N content under the long-term grazing. This supported our hypothesis that long-term over-grazing suppresses denitrification and N2O production. Although significant differences in denitrification and N2O production were not found between the four GI, there was a general trend that cumulative denitrification and N2O production decreased as grazing intensity increased, especially in 2006. Lower N losses via denitrification and N2O production in the grazed plots, to some extent, may contribute to the mitigation of greenhouse gas emission and help to preserve soil N and ameliorate the negative impacts of grazing on plant growth, productivity, and ecological restoration processes in the temperate steppe in northern China.  相似文献   

9.
Nitrogen deposition and carbon sequestration in alpine meadows   总被引:6,自引:0,他引:6  
Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of 15N tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of 15N tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.  相似文献   

10.
In an open-top chamber experiment located in a mountain stand of 14-years-old Norway spruce (Picea abies [L.] Karst.), trees were continuously exposed to either ambient CO2 concentration (A), or ambient + 350 µmol mol–1 (E) over four growing seasons. Respiration rates of different woody parts (stem, branches, coarse roots) were measured during the last growing season. The calculated increase in the respiration rate related to a 10 °C temperature change (Q10) was different in stem compared to branches and roots. Differences between the E and A variants were statistically significant only for roots in the autumn. Stem maintenance respiration (RMs) measured in April and November (periods of no growth activity) were not different. The stem respiration values (Rs) were recalculated to a standard temperature of 15 °C to estimate the seasonal course. The obtained Rs differed significantly between used variants during July and August. At the end of the season, Rs in E decreased slower than in A, indicating some prolongation of the physiological activity under the elevated CO2 concentration. The total stem respiration carbon losses for the investigated growing season (May – September) were higher for A (2.32 kg(C) m–2 season–1) compared to E (2.12 kg(C) m–2 season–1). The respiration rates of the whorl branches (Rb) were lower compared with the stem respiration but not significantly different between the used variants. The root respiration rate was increased in E variant.  相似文献   

11.
Rates and pathways of nitrous oxide production in a shortgrass steppe   总被引:3,自引:2,他引:3  
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y from all shortgrass steppe (25 × 106 ha).  相似文献   

12.
氮素类型和剂量对寒温带针叶林土壤N2O排放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
大气氮沉降输入会增加森林生态系统氮素有效性,进而改变土壤N_2O产生与排放,然而有关不同氮素离子(氧化态NO_3~--N与还原态NH_4~+-N)沉降对土壤N_2O排放的影响知之甚少。以大兴安岭寒温带针叶林为研究对象,构建了3种类型(NH_4Cl、KNO_3、NH_4NO_3)和4个施氮水平(0、10、20、40 kg N hm~(-2)a~(-1))的增氮控制试验,利用流动化学分析仪和静态箱-气相色谱法4次/月测定凋落物层和矿质层土壤无机氮含量、土壤-大气界面N_2O净交换通量以及相关环境因子,分析施氮类型和剂量对土壤氮素有效性、土壤N_2O通量的影响探讨氮素富集条件下土壤N_2O通量的环境驱动机制。结果表明:施氮类型和剂量均显著影响土壤无机氮含量,土壤NH_4~+-N的积累效应显著高于NO_3~--N。施氮一致增加寒温带针叶林土壤N_2O排放,NH_4NO_3促进效应最为明显,增幅为442%-677%,高于全球平均水平(134%)。土壤N_2O通量与土壤温度、凋落物层NH_4~+-N含量正相关,且随着施氮水平增加而增加。结果表明大气氮沉降短期内不会导致寒温带针叶林土壤NO_3~--N大量流失,但会显著促进土壤N_2O的排放。此外,外源性NH_4~+和NO_3~-输入对土壤N_2O排放的促进作用具有协同效应,在未来森林生态系统氮循环和氮平衡研究中应该区分对待。  相似文献   

13.
During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 μg N m−2 h−1 in summer and 3.4 μg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 μg N m−2 h−1) as compared to summer (6.0 μg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 μg N m−2 h−1 in summer and −18.3 μg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 μg C m−2 h−1; autumn: −56.5 μg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO2 resp−1) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 μg N kg−1 SDW d−1) and autumn measurements (0.89 μg N kg−1 SDW d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 μg N kg−1 SDW d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 μg N kg−1 SDW d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.  相似文献   

14.
Estavillo  JM  Merino  P  Pinto  M  Yamulki  S  Gebauer  G  Sapek  A  Corré  W 《Plant and Soil》2002,239(2):253-265
Soils are an important source of N2O, which can be produced both in the nitrification and the denitrification processes. Grassland soils in particular have a high potential for mineralization and subsequent nitrification and denitrification. When ploughing long term grassland soils, the resulting high supply of mineral N may provide a high potential for N2O losses. In this work, the short-term effect of ploughing a permanent grassland soil on gaseous N production was studied at different soil depths. Fertiliser and irrigation were applied in order to observe the effect of ploughing under a range of conditions. The relative proportions of N2O produced from nitrification and denitrification and the proportion of N2 gas produced from denitrification were determined using the methyl fluoride and acetylene specific inhibitors. Irrespectively to ploughing, fertiliser application increased the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). Application of fertiliser also increased the denitrification N2O/N2 ratio both in the denitrification potential and in the gaseous N productions by denitrification. Ploughing promoted soil organic N mineralization which led to an increase in the rates of N2O production, N2O production from nitrification, N2O production from denitrification and total denitrification (N2O + N2). In both the ploughed and unploughed treatments the 0–10 cm soil layer was the major contributing layer to gaseous N production by all the above processes. However, the contribution of this layer decreased by ploughing, gaseous N productions from the 10 to 30 cm layer being significantly increased with respect to the unploughed treatment. Ploughing promoted both nitrification and denitrification derived N2O production, although a higher proportion of N2O lost by denitrification was observed as WFPS increased. Recently ploughed plots showed lower denitrification derived N2O percentages than those ploughed before as a result of the lower soil water content in the former plots. Similarly, a lower mean nitrification derived N2O percentage was found in the 10–30 cm layer compared with the 0–10 cm.  相似文献   

15.
Mechanisms of carbon and nutrient release and retention in beech forest gaps   总被引:12,自引:0,他引:12  
Brumme  Rainer 《Plant and Soil》1995,168(1):593-600
Fluxes of CO2 and N2O were measured along a microclimatic gradient stretching from the centre of a gap into a mature beech stand using an automated chamber method. Simultaneously the regulating factors like soil water tensions, soil temperatures, nitrate concentrations were measured along the gradient. The daily mean values of the fluxes of CO2 and N2O were divided into classes of temperature and furthermore subdivided into classes of soil water tension to assess the significance of each regulating factor.Soil respiration at the centre of the gap was 40% lower compared to the rooted mature stand. The difference was explained by root respiration. At both sites soil respiration was primarily controlled by the soil temperature with an average Q10 value of 2.3 over the different classes of temperature and soil water tension. Soil water tension reduced the soil respiration by up to 20% only by soil water tension above 400–600 hPa at the mature stand. The formation of N2O was reduced when the soil temperature was below 10°C or the soil water tension exceeded 200 hPa. Therefore the N2O emission was 6 times higher at the unrooted centre of the gap due to the high moisture content in the growing season. Higher nitrate concentration doubled the N2O emission at the unrooted edge of the canopy and resulted in losses of 6.4 kg N ha-1 within six months. Above 10°C and below 200 hPa the N2O emission depended strongly upon the temperature with varying Q10 values over the different classes of temperature and soil water tension. High Q10 values up to 14.4 have been calculated below 14°C and were explained by several processes with synergetic effects.  相似文献   

16.
Castaldi  Simona  Smith  Keith A. 《Plant and Soil》1998,199(2):229-238
N2O emissions from two slightly alkaline sandy soils, from arable land and a woodland, were determined in a laboratory experiment in which the soils were incubated with different sources of nitrogen, with or without glucose, and with 0, 1 and 100 mL C2H2 L-1. Large differences in the rate of N2O production were observed between the two soils and between the different N treatments. The arable soil showed very low N2O emissions derived from reduced forms of N as compared with the N2O which was produced when the soil was provided with NO 2 - or NO 3 - and a C source, suggesting a very active denitrifier population. In contrast, the woodland soil showed a very low denitrification activity and a much higher N2O production derived from the oxidation of NH 4 + and reduction of NO 2 - by some processes probably mediated by autotrophic or heterotrophic nitrifiers or dissimilatory NO 2 - reducers. In both soils, the highest N2O emissions were induced by NO 2 - addition. Those emissions were demonstrated to have a biological origin, as no significant N2O emissions were measured when the soil was autoclaved.  相似文献   

17.
We measured the exchange of N2O and CH4 between the atmosphere and soils in 5 spruce-fir stands located along a transect from New York to Maine. Nitrous oxide emissions averaged over the 1990 growing season (May–September) ranged from 2.1 ug N2O-N/m2-hr in New York to 0.4 ug N2O-N/m2-hr in Maine. The westernmost sites, Whiteface Mtn., New York and Mt. Mansfield, Vermont, had the highest nitrogen-deposition, net nitrification and N2O emissions. Soils at all sites were net sinks for atmospheric CH4 Methane uptake averaged over the 1990 growing season ranged from 0.02 mg CH4-C/M2-hr in Maine to 0.05 mg CH4-C/m2-hr in Vermont. Regional differences in CH4 uptake could not be explained by differences in nitrogen-deposition, soil nitrogen dynamics, soil moisture or soil temperature. We estimate that soils in spruce-fir forests at our study sites released ca. 0.02 to 0.08 kg N2O-N/ha and consumed ca. 0.74 to 1.85 kg CH4 C/ha in the 1990 growing season.  相似文献   

18.
B. Coté  C. Camire 《Plant and Soil》1984,78(1-2):209-220
Summary Growth and N accumulation were assessed in pure and mixed plantings (2 years old) of hybrid poplar and black alder in southern Québec. Symbiotic dinitrogen fixation was evaluated by natural15N dilution. Growth of hybrid poplar plants and N accumulation in their tissues increased with their decreasing contribution to species ratio whereas no differences among treatments were measured for black alder. Yield and N content per hectare of aboveground components increased with the proportion of black alder in the plantation. Symbiotic dinitrogen fixation was estimated at 68% of alder nitrogen in both pure and mixed treatments. The maximum rate of N-fixation was 53kg ha–1 yr–1 in pure alder plots. The amount of nitrogen accumulated in entire plants of black alder from symbiotic fixation could be sufficient to balance the N export in harvested stems and branches of short-rotation plantations containing at least 33% of alder.  相似文献   

19.
Direct groundwater inputs are receiving increasingattention as a potential source of nutrients and otherdissolved constituents to the coastal ocean. Seepageinto St. George Sound, Florida was measuredextensively from 1992 to 1994 using seepage meters. Spatial and temporal variations were documented alonga 7-km stretch of coastline and up to 1 km from shore. Measurements were made at 3 transects perpendicular toshore and 1 transect parallel to shore. The generalresults indicated that seepage decreased with distancefrom shore (2 of 3 transects), and substantialtemporal and spatial variability was observed inseepage flow from nearshore sediments. In addition,trends in mean monthly integrated seepage rates weresimilar to precipitation patterns measured at a nearbycoastal weather station. Based on these measurements, weestimate that the magnitude of groundwater seepage intothe study area is substantial, representing from 0.23 to4.4 m3 sec-1of flow through the sediments, approximately equivalentto a first magnitude spring. Although it is unknown howrepresentative this region is with respect to globalgroundwater discharge, it demonstrates thatgroundwater flow can be as important as riverine andspring discharge in some cases. Our subsurfacedischarge rates suggest groundwater is an importanthydrologic source term for this region and may beimportant to the coastal biogeochemistry as well.  相似文献   

20.
Net productions of permanent soil atmosphere gases (N2, CO2, O2) and temporary gases (N2O, NO) were monitored in soil cores using a non-interfering, fully automated measuring technique allowing highly time resolved measurements over prolonged periods. The influence of changes in available organic carbon on CO2, N2O, NO and N2 production was studied by changing the soil carbon content through aerobic preincubations of different length, up to 21 days.The aerobic preincubation caused an increase in NO3 - concentration and a decrease in available carbon content. Available carbon content dominated both CO2 and total N gas (N2+N2O+NO) production during anaerobiosis. Both CO2 and total N gas production rates decreased with increasing length of the previous aerobic preincubation, this in spite of the higher initial NO3 - concentration.Total denitrification rates were closely related to the anaerobic CO2 production rates. No relation was found between water soluble carbon content and total denitrification. The N2O/N2 ratio could be explained by an interaction of carbon availability, NO3 - concentration and enzyme status. Net N2O consumption was monitored. The balance between cumulative total N gas production and NO3 - consumption varied according to the different treatments. Cumulative N2O production exceeded cumulative N2 production for 0 up to 5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号