首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C D'Silva 《FEBS letters》1986,202(2):240-244
A number of carboxyl-substituted S-blocked glutathiones have been shown to be competitive inhibitors of yeast glyoxalase I at 25 degrees C, pH 6.6. Amidation of the glycyl carboxyl group of S-(p-bromobenzyl)glutathione has no appreciable effect on binding whilst methylation reduces binding by 8.9-fold, indicating a steric constraint and the possible presence of a hydrogen bond in this region of the enzyme. Amidation of both carboxyl groups of S-(p-bromobenzyl)glutathione reduces binding significantly by 237-fold; this result agrees with electrostatic interaction of the Glu COO- group with a group located within the enzyme surface as opposed to the Gly COO- group, previously proposed.  相似文献   

2.
A series of twelve S-blocked and N,S-blocked glutathione derivatives has been studied as inhibitors of glyoxalase I [R)-S-lactoylglutathione methylglyoxal-lyase (isomerising), EC 4.4.1.5) from human erythrocytes. A number of new N,S-blocked glutathiones have been synthesised. Inhibition at pH 7.0, 25 degrees C was linear-competitive in all cases and the Ki values were interpreted in terms of the absence of a specific binding interaction for the N-site of the inhibitor and the absence of coupling between binding processes at N- and S-sites (the regions around the NH2 and HS groups, respectively, of GSH analogues bound to enzyme). These observations are in strong contrast to previous results with the yeast enzyme. Some Ki values were measured for yeast glyoxalase I. A special binding interaction of the phenyl groups with enzyme from both species was found for glutathione derivatives with N-acyl groups of structure -NH X CO X X X Y X Ph but not for -NH X COPh, where X and Y were variously -CH2-, -NH- and -O-. Studies were made of the range of stability of human erythrocyte glyoxalase I to pH. The pH profiles for the Ki values of S-p-bromobenzyl)glutathione and N-acetyl-S-(p-bromobenzyl)glutathione indicated no pH dependence for the latter and little, if any, for the former inhibitor. The mean Ki over the pH range 5-8.5 for S-(p-bromobenzyl)glutathione was 1.21 +/- 0.37 microM and for N-acetyl-S-(p-bromobenzyl)glutathione in the same pH range, Ki decreased from 1.45 +/- 0.26 microM to 0.88 +/- 0.11 M.  相似文献   

3.
Yeast glyoxalase I. Circular dichroic spectra and pH effects   总被引:1,自引:0,他引:1  
Large scale isolation and physicochemical characterisation of yeast glyoxalase I showed that this enzyme contained small amounts of carbohydrates. Circular dichroic spectra of the enzyme measured in the presence and absence of S-(p-bromobenzyl)glutathione indicated perturbation of a tyrosine on binding of this competitive inhibitor. Values of Ki for competitive inhibitors were pH invariant over the accessible pH range.  相似文献   

4.
Zn2+ in native glyoxalase I from human erythrocytes can be replaced by Cu2+, giving an inactive enzyme. Cu2+ was demonstrated to compete with the activating metals Zn2+ and Mn2+, indicating a common binding site on the enzyme for these metal ions. The electron paramagnetic resonance (EPR) spectra of 63Cu(II) glyoxalase I at 77 K and of its complexes with glutathione and some glutathione derivatives are characteristic of Cu2+ in an elongated octahedral coordination (g parallel = 2.34, g perpendicular = 2.09, and A parallel = 14.2 mT). The low-field bands of the free enzyme are asymmetric and become symmetrical upon addition of glutathione or S-(p-bromobenzyl)glutathione but not S-(D-lactoyl)glutathione. The results indicate the existence of two conformations of Cu(II) glyoxalase I, in agreement with the effects caused by these compounds on the protein fluorescence. The copper hyperfine line at low field in the EPR spectrum of the S-(p-bromobenzyl)glutathione complex of 63Cu(II) glyoxalase I shows a triplet structure, indicative of coupling to one nitrogen ligand in the equatorial plane. Similar results were obtained with the glutathione complex. By addition of the spectrum of the S-(p-bromobenzyl)glutathione complex and a spectrum corresponding to two nitrogen ligands with two different coupling constants, a good fit was obtained for the low-field region of the asymmetric spectrum of free 63Cu(II) glyoxalase I. The first two spectra are assumed to correspond to two separate conformational states of the enzyme. The results demonstrate that at least one nitrogen ligand is involved in the binding of Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A number of porphyrin derivatives have been found to inhibit yeast glyoxalase I (EC 4.4.1.5) at 25 degrees C, including haemin, protoporphyrin IX, coproporphyrin III, haematoporphyrin, deuteroporphyrin as well as meso-(tetrasubstituted) porphines. Bilirubin and chlorophyllin were also inhibitory, but not cobalamin, adipic, pimelic or suberic acids. Whilst the Ki value for linear competitive inhibition by meso-tetra(4-methylpyridyl)porphine was pH-dependent, analogous Ki values for meso-tetra(4-carboxyphenyl)- and meso-tetra(4-sulphonatophenyl)porphines followed the Henderson-Hasselbalch equation with pKapp values of 7.10 and 6.50, respectively. Protoporphyrin showed similar behaviour (pKapp 7.06) with a deviation at lower pH. The haemin pH profile for Ki showed a maximum at approx. pH 6.5. The redox reaction between haemin and glutathione did not interfere in the inhibition studies. The Ki value for S-(p-bromobenzyl)glutathione was pH-independent. A detailed analysis of porphyrin binding modes was undertaken.  相似文献   

6.
Equine liver glutathione S-transferase has been shown to consist of two identical subunits of apparent Mr 25,500 and a pl of 8.9. Kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene as a substrate suggests a random rapid-equilibrium mechanism, which is supported by inhibition studies using glutathione analogues. S-(p-Bromobenzyl)glutathione and the corresponding N alpha-, CGlu- and CGly-substituted derivatives have been found, at pH 6.5, to be linear competitive inhibitors, with respect to GSH, of glutathione transferase. N-Acetylation of S-(p-bromobenzyl)glutathione decreases binding by 100-fold, whereas N-benzoylation and N-benzyloxycarbonylation abolish binding of the derivative to the enzyme. The latter effect has been attributed to a steric constraint in this region of the enzyme. Amidation of the glycine carboxy group of S-(p-bromobenzyl)glutathione decreases binding by 13-fold, whereas methylation decreases binding by 70-fold, indicating a steric constraint and a possible electrostatic interaction in this region of the enzyme. Amidation of both carboxy groups decreases binding significantly by 802-fold, which agrees with electrostatic interaction of the glutamic acid carboxy group with a group located on the enzyme.  相似文献   

7.
1. Yeast glyoxalase I was inactivated by N-acetylimidazole and tetranitromethane, the latter process following pK app 7.31 and irreversibly producing a protein with a spectrum typical of 3-nitrotyrosine. 2. For yeast glyoxalase I, amino-acid analysis and protection studies with S-(p-bromobenzyl)glutathione, a competitive inhibitor, indicated two classes of tetranitromethane-reactive tyrosine residues, fast- and slow-reacting, with the latter class containing the crucial tyrosine(s). 3. Human erythrocyte glyoxalase I was inactivated by tetranitromethane in fast and slow processes, protection studies in this case indicating the important tyrosine(s) as fast-reacting.  相似文献   

8.
The inhibition of glyoxalase I enzyme to increase cellular levels of methylglyoxal has been developed as a rationale for the production of anticancer agents. Synthesis of a peptidomimetic analog of the previously prepared potent glyoxalase inhibitor, S-(p-bromobenzyl)glutathione (PBBG), was accomplished by inserting a urea linkage, NH-CO-NH, to replace the gamma-glutamyl peptide bond. Thus, the target compound, gamma-(L-gamma-azaglutamyl)-S-(p-bromobenzyl)-L-cysteinylglycine 6, was a potent inhibitor of glyoxalase I with almost no loss of activity when compared to PBBG. However, unlike PBBG, 6 was completely resistant to enzymatic degradation by kidney homogenate or by purified gamma-glutamyltranspeptidase enzyme.  相似文献   

9.
The nature of the binding determinants used in the interaction of glutathione-based derivatives and bovine liver glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) has been investigated. Linear competitive inhibition was observed for S-blocked and S,N-blocked glutathiones with bovine liver glyoxalase II (molecular weight 22 500 by sodium dodecyl sulphate polyacrylamide gel electrophoresis; pI = 7.48 by analytical isoelectric focussing). There is a significant hydrophobic region on the enzyme to bind substituents around the sulphydryl-derived moiety of the substrate--a hydrophobic S-site. However, there is no evidence for binding of the N-site of the substrate (or inhibitor) to glyoxalase II. In contrast to glyoxalase I, there is no linkage between binding forces used at the S- and N-sites. Binding of S,N-dicarbobenzoxyglutathione is pH-dependent, showing dependence on an ionisation with pKapp approximately equal to 7.2 (binding more tightly at higher pH), as is the kcat value (pKapp approximately equal to 7.8) for S-D-lactoylglutathione.  相似文献   

10.
X-ray edge and extended absorption fine structure spectra of Zn2+ at the active site of glyoxalase I have been measured. The edge spectrum reveals a simple set of transitions consistent with a 7-coordinate or distorted octahedral Zn2+ model complex. Analysis of the fine structure rules out sulfur ligands to Zn2+ and yields a best fit complex with Zn2+-N (or Zn2+-O) distances of 2.04 and 2.10 A, which are too great for tetrahedral Zn2+ coordination but are appropriate for an octahedral or more highly coordinated complex. Peaks of electron density in the Fourier-transformed region of the higher order shells at distances of 3-4 A from the Zn2+-imidazole model similar to those found with known Zn2+-imidazole model complexes, including carbonic anhydrase [Yachandra, V., Powers, L., & Spiro, T.G. (1983) J. Am. Chem. Soc. 105, 6596-6604], indicating at least two imidazole ligands to Zn2+ on glyoxalase I. Binding of the heavy atom substrate analogue S-(p-bromobenzyl)glutathione did not significantly alter the number of atoms directly bonded to Zn2+ or their distances. No evidence for coordination of the cysteine sulfur of glutathione by the Zn2+ was obtained, and no heavy atom signal from bromine was detected, indicating this atom to be greater than or equal to 4 A from the Zn2+. However, conformational changes of the imidazole ligands of Zn2+ upon binding of the substrate analogue were suggested by changes in the relative intensity of the doublet peaks at 3-4 A from the Zn2+ and assignable to imidazole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In principle, competitive inhibitors of glyoxalase I that also serve as substrates for the thioester hydrolase glyoxalase II might function as tumor-selective anti-cancer agents, given the role of these enzymes in removing cytotoxic methylglyoxal from cells and the observation that glyoxalase II activity is abnormally low in some types of cancer cells. In support of the feasibility of this anticancer strategy, an inhibitor of this type has been synthesized by a thioester-interchange reaction between glutathione and N-hydroxy-N-methylcarbamate 4-chlorophenyl ester to give S-(N-hydroxy-N-methylcarbamoyl)glutathione (1). This compound was designed to be a tight-binding inhibitor of glyoxalase I, on the basis of its stereoelectronic similarity to the enediol(ate) intermediate that forms along the reaction pathway of this enzyme. Indeed, 1 is a competitive inhibitor of yeast glyoxalase I, with an inhibition constant (Ki = 68 microM) that is approximately 30-fold lower than that reported for S-D-lactoylglutathione and approximately 7-fold lower than the Km for glutathione-methylglyoxal thiohemiacetal. In addition, 1 is a substrate for bovine liver glyoxalase II, with a Km (0.48 mM) approximately equal to that of the normal substrate S-D-lactoyglutathione and a kcat approximately 2 x 10(-5)-fold that of the normal substrate. Membrane transport studies show that 1 can be delivered into human erythrocytes (used here as a model cell) either by direct diffusion of 1 across the cell membrane or by more rapid diffusion of the glycylethyl ester of 1 across the cell membrane, followed by the catalyzed hydrolysis of the ester to give 1.  相似文献   

12.
Potential inhibitors of the enzyme glyoxalase I from Escherichia coli have been evaluated using a combination of electrospray mass spectrometry and conventional kinetic analysis. An 11-membered library of potential inhibitors included a glutathione analogue resembling the transition-state intermediate in the glyoxalase I catalysis, several alkyl-glutathione, and one flavonoid. The E. coli glyoxalase I quaternary structure was found to be predominantly dimeric, as is the homologous human glyoxalase I. Binding studies by electrospray revealed that inhibitors bind exclusively to the dimeric form of glyoxalase I. Two specific binding sites were observed per dimer. The transition-state analogue was found to have the highest binding affinity, followed by a newly identified inhibitor; S-{2-[3-hexyloxybenzoyl]-vinyl}glutathione. Kinetic analysis confirmed that the order of affinity established by mass spectrometry could be correlated to inhibitory effects on the enzymatic reaction. This study shows that selective inhibitors may exist for the E. coli homologue of the glyoxalase I enzyme.  相似文献   

13.
The synthesis of N-(p-nitrocarbobenzoxy)glutathione (N-pNCBG) is reported. N-pNCBG and glutathione (GSH) were coupled to Affi-gel 10 by a thioester linkage and resulted in very effective bound ligands for a fast purification of glyoxalase II from corn. The S-(N-pNCBG)-affinity column showed a glyoxalase II binding capacity of up to 2-fold higher than that of the glutathione-affinity column. A single form of glyoxalase II was evidenced by PAGE in both crude extracts and in the affinity purified enzyme. A 45% recovery of glyoxalase II activity (purification, approx. 433-fold) was obtained for both matrices by a single chromatography. The purified glyoxalase is an acidic protein (pI 4.5) of about 26,000 relative molecular mass. Substrate studies for the corn glyoxalase II show, among possible substrates tested, that S-D-lactyl-glutathione is the preferred substrate. An inhibition study was performed with methyl-, propyl-, hexyl-, p-nitrobenzyl-, p-chlorophenacyl-, carbobenzoxy-, and p-nitrocarbobenzoxy-S-glutathione. Methyl-S-glutathione did not inhibit corn glyoxalase II; the others were found to be linear competitive inhibitors. The derivatives containing a thioether bond are weaker inhibitors than those containing a thioester bond or a carbonyl group. p-Nitrobenzyl-S-glutathione is the weakest inhibitor; the carbobenzoxy-S-derivatives are stronger inhibitors than the p-chlorophenacyl S-derivative.  相似文献   

14.
Potential inhibitors of the enzyme glyoxalase I from Escherichia coli have been evaluated using a combination of electrospray mass spectrometry and conventional kinetic analysis. An 11-membered library of potential inhibitors included a glutathione analogue resembling the transition-state intermediate in the glyoxalase I catalysis, several alkyl-glutathione, and one flavonoid. The E. coli glyoxalase I quaternary structure was found to be predominantly dimeric, as is the homologous human glyoxalase I. Binding studies by electrospray revealed that inhibitors bind exclusively to the dimeric form of glyoxalase I. Two specific binding sites were observed per dimer. The transition-state analogue was found to have the highest binding affinity, followed by a newly identified inhibitor; S-{2-[3-hexyloxybenzoyl]-vinyl}glutathione. Kinetic analysis confirmed that the order of affinity established by mass spectrometry could be correlated to inhibitory effects on the enzymatic reaction. This study shows that selective inhibitors may exist for the E. coli homologue of the glyoxalase I enzyme.  相似文献   

15.
The prevalent glyoxalase II (S-2-hydroxyacylglutathione hydrolase, EC 3.1.2.6, a form) of rat liver cytosol has been studied with a series of seven S-blocked glutathione derivatives. At pH 7.4 and 20 degrees C, only p-nitrobenzyl-S-glutathione was found completely inactive. All the other derivatives are linear competitive inhibitors of the enzyme. Ki values using S-D-lactoylglutathione as substrate are reported. Alkyl-S-glutathiones are weak inhibitors and their inhibition increases with the decrease of the length of the alkyl chain. The best inhibitors are those glutathione derivatives which contain a thioester bond (carbobenzoxy- and p-nitrocarbobenzoxy-S-glutathione) or a carbonyl group (p-chlorophenacyl-S-glutathione). Inhibition by carbobenzoxy-S-glutathione seems to be more complex since the double reciprocal plot shows deviation from linearity at low substrate concentration.  相似文献   

16.
Optimization of efficiency in the glyoxalase pathway   总被引:2,自引:0,他引:2  
A quantitative kinetic model for the glutathione-dependent conversion of methylglyoxal to D-lactate in mammalian erythrocytes has been formulated, on the basis of the measured or calculated rate and equilibrium constants associated with (a) the hydration of methylglyoxal, (b) the specific base catalyzed formation of glutathione-(R,S)-methylglyoxal thiohemiacetals, (c) the glyoxalase I catalyzed conversion of the diastereotopic thiohemiacetals to (S)-D-lactoylglutathione, and (d) the glyoxalase II catalyzed hydrolysis of (S)-D-lactoylglutathione to form D-lactate and glutathione. The model exhibits the following properties under conditions where substrate concentrations are small in comparison to the Km values for the glyoxalase enzymes: The overall rate of conversion of methylglyoxal to D-lactate is primarily limited by the rate of formation of the diastereotopic thiohemiacetals. The hydration of methylglyoxal is kinetically unimportant, since the apparent rate constant for hydration is (approximately 500-10(3))-fold smaller than that for formation of the thiohemiacetals. The rate of conversion of methylglyoxal to (S)-D-lactoylglutathione is near optimal, on the basis that the apparent rate constant for the glyoxalase I reaction (kcatEt/Km congruent to 4-20 s-1 for pig, rat, and human erythrocytes) is roughly equal to the apparent rate constant for decomposition of the thiohemiacetals to form glutathione and methylglyoxal [k(obsd) = 11 s-1, pH 7]. The capacity of glyoxalase I to use both diastereotopic thiohemiacetals, versus only one of the diastereomers, as substrates represents a 3- to 6-fold advantage in the steady-state rate of conversion of the diastereomers to (S)-D-lactoylglutathione.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Tyrosine-175 located in the active site of human glyoxalase II was replaced by phenylalanine in order to study the contribution of this residue to catalysis. The mutation had a marginal effect on the k(cat) value determined using S-D-lactoylglutathione as substrate. However, the Y175F mutant had an 8-fold higher K(m) value than the wild-type enzyme. The competitive inhibitor S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione had a 30-fold higher K(i) value towards the mutant, than that of the wild-type. Pre-equilibrium fluorescence studies with the inhibitor showed that this was due to a significantly increased off-rate for the mutant enzyme. The phenolic hydroxyl group of tyrosine-175 is within hydrogen bonding distance of the amide nitrogen of the glycine in the glutathione moiety and the present study shows that this interaction makes a significant contribution to the binding of the active-site ligand.  相似文献   

18.
The glyoxalase system, comprizing glyoxalase I and glyoxalase II, is a ubiquitous pathway that detoxifies highly reactive aldehydes, such as methylglyoxal, using glutathione as a cofactor. Recent studies of Leishmania major glyoxalase I and Trypanosoma brucei glyoxalase II have revealed a unique dependence upon the trypanosomatid thiol trypanothione as a cofactor. This difference suggests that the trypanothione-dependent glyoxalase system may be an attractive target for rational drug design against the trypanosomatid parasites. Here we describe the cloning, expression and kinetic characterization of glyoxalase I from Trypanosoma cruzi. Like L. major glyoxalase I, recombinant T. cruzi glyoxalase I showed a preference for nickel as its metal cofactor. In contrast with the L. major enzyme, T. cruzi glyoxalase I was far less fast-idious in its choice of metal cofactor efficiently utilizing cobalt, manganese and zinc. T. cruzi glyoxalase I isomerized hemithio-acetal adducts of trypanothione more than 2400 times more efficiently than glutathione adducts, with the methylglyoxal adducts 2-3-fold better substrates than the equivalent phenylglyoxal adducts. However, glutathionylspermidine hemithioacetal adducts were most efficiently isomerized and the glutathionylspermidine-based inhibitor S-4-bromobenzylglutathionylspermidine was found to be a potent linear competitive inhibitor of the T. cruzi enzyme with a K(i) of 5.4+/-0.6 microM. Prediction algorithms, combined with subcellular fractionation, suggest that T. cruzi glyoxalase I localizes not only to the cytosol but also the mitochondria of T. cruzi epimastigotes. The contrasting substrate specificities of human and trypanosomatid glyoxalase enzymes, confirmed in the present study, suggest that the glyoxalase system may be an attractive target for anti-trypanosomal chemotherapy.  相似文献   

19.
Trypanothione replaces glutathione in defence against cellular damage caused by oxidants, xenobiotics and methylglyoxal in the trypanosomatid parasites, which cause trypanosomiasis and leishmaniasis. In Leishmania major, the first step in methylglyoxal detoxification is performed by a trypanothione-dependent glyoxalase I (GLO1) containing a nickel cofactor; all other characterized eukaryotic glyoxalases use zinc. In kinetic studies L. major and human enzymes were active with methylglyoxal derivatives of several thiols, but showed opposite substrate selectivities: N1-glutathionylspermidine hemithioacetal is 40-fold better with L. major GLO1, whereas glutathione hemithioacetal is 300-fold better with human GLO1. Similarly, S-4-bromobenzylglutathionylspermidine is a 24-fold more potent linear competitive inhibitor of L. major than human GLO1 (Kis of 0.54 microM and 12.6 microM, respectively), whereas S-4-bromobenzylglutathione is >4000-fold more active against human than L. major GLO1 (Kis of 0.13 microM and >500 microM respectively). The crystal structure of L. major GLO1 reveals differences in active site architecture to both human GLO1 and the nickel-dependent Escherichia coli GLO1, including increased negative charge and hydrophobic character and truncation of a loop that may regulate catalysis in the human enzyme. These differences correlate with the differential binding of glutathione and trypanothione-based substrates, and thus offer a route to the rational design of L. major-specific GLO1 inhibitors.  相似文献   

20.
Glyoxalase I (EC 4.4.1.5) activity has long been associated with rapid cell proliferation, but experimental evidence is forthcoming, linking its role to stress tolerance as well. Proliferative callus cultures of groundnut ( Arachis hypogaea L. cv. JL24) showed a 3.3-fold increase in glyoxalase I activity during the logarithmic growth phase, correlating well with the data on FW gain and mitotic index. Inhibition of cell division decreased glyoxalase I activity and vice versa, thus further corroborating its role as a cell division marker enzyme. Cell lines of A. hypogaea selected in the presence of high salt (NaCl) and herbicide (glyphosate) concentrations, yielded 4.2- to 4.5-fold and 3.9- to 4.6-fold elevated glyoxalase I activity, respectively, in a dose dependent manner reflective of the level of stress tolerance. The stress-induced increase in enzyme activity was also accompanied by an increase in the glutathione content. Exogenous supplementation of glutathione could partially alleviate the growth inhibition of callus cultures induced by methylglyoxal and d -isoascorbic acid, but failed to recover the loss in glyoxalase I activity due to d -isoascorbic acid. The adaptive significance of elevated glyoxalase I activity in maintaining glutathione homeostasis has been discussed in view of our understanding on the role of glutathione in the integration of cellular processes with plant growth and development under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号