首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here a quantitative method for the analysis of ABT-578 in human whole blood samples. Sample preparation was achieved by a semi-automated 96-well format liquid-liquid extraction (LLE) method. Aluminum/polypropylene heat seal foil was used to enclose each well of the 96-well plate for the liquid-liquid extraction. A liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) method with pre-column regeneration was developed for the analysis of sample extracts. Selective reaction monitoring (SRM) of the mass transitions m/z 983-935 and m/z 931-883 was employed for the detection of ABT-578 and internal standard, respectively. The ammonium adduct ions [M + NH(4)](+) generated from electrospray ionization were monitored as the precursor ions. The assay was validated for a linear dynamic range of 0.20-200.75ng/ml. The correlation coefficient (r) was between 0.9959 and 0.9971. The intra-assay CV (%) was between 1.9 and 13.5% and the inter-assay CV (%) was between 4.7 and 11.3%. The inter-assay mean accuracy was between 86.4 and 102.5% of the theoretical concentrations.  相似文献   

2.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

3.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with electrospray ionization (ESI) was developed and validated for the simultaneous determination of pitavastatin and its lactone in human plasma and urine. Following a liquid-liquid extraction, both the analytes and internal standard racemic i-prolact were separated on a BDS Hypersil C(8) column, using methanol-0.2% acetic acid in water (70: 30, v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 422.4-->m/z 290.3 for pitavastatin, m/z 404.3-->m/z 290.3 for pitavastatin lactone and m/z 406.3-->m/z 318.3 for the internal standard, respectively. Linear calibration curves of pitavastatin and its lactone were obtained in the concentration range of 1-200 ng/ml, with a lower limit of quantitation of 1 ng/ml. The intra- and inter-day precision values were less than 4.2%, and accuracies were between -8.1 and 3.5% for both analytes. The proposed method was utilized to support clinical pharmacokinetic studies of pitavastatin in healthy subjects following oral administration.  相似文献   

4.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with positive electrospray ionization (ESI) was developed for the quantification of ranolazine in human plasma. After liquid-liquid extraction of ranolazine and internal standard (ISTD) phenoprolamine from a 100 microl specimen of plasma, HPLC separation was achieved on a Nova-Pak C(18) column, using acetonitrile-water-formic acid-10% n-butylamine (70:30:0.5:0.08, v/v/v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 428.5-->m/z 279.1 for ranolazine and m/z 344.3-->m/z 165.1 for the internal standard, respectively. Linear calibration curves were obtained in the concentration range of 5-4000 ng/ml, with a lower limit of quantitation (LLOQ) of 5 ng/ml. The intra- and inter-day precision values were below 3.7% and accuracy was within +/-3.2% at all three quality control (QC) levels. This method was found suitable for the analysis of plasma samples collected during the phase I pharmacokinetic studies of ranolazine performed in 28 healthy volunteers after single oral doses from 200 mg to 800 mg.  相似文献   

5.
We determined cabergoline and L-dopa in human plasma using liquid chromatography-mass spectrometry with tandem mass spectrometry (LC-MS-MS). The deproteinized plasma samples with organic solvent or acid were analyzed directly by reversed-phase liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 381 of m/z 452 for cabergoline and m/z 152 of m/z 198 for L-dopa) on LC-MS-MS with electrospray ionization (ESI), cabergoline and L-dopa in human plasma were determined. Calibration curves of the method showed a good linearity in the range 5-250 pg/ml for cabergoline and 1-200 ng/ml for L-dopa, respectively. The limit of determination was estimated to be approximately 2 pg/ml for cabergoline and approximately 0.1 ng/ml for L-dopa, respectively. The method was applied to the analysis of cabergoline and L-dopa in plasma samples from patients treated with these drugs. The precision of analysis showed coefficients of variation ranging from 3.8% to 10.5% at cabergoline concentration of 13.8-26.2 pg/ml and from 2.9% to 8.9% at an L-dopa concentration of 302.5-522.1 ng/ml in patient plasma. As a result, the procedure proved to be very suitable for routine analysis.  相似文献   

6.
A new method for the quantification of cidofovir (CDV), an acyclic nucleotide analogue of cytosine with antiviral activity against a broad-spectrum of DNA viruses, in human serum, using high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been developed. A strong anion exchange (SAX) solid-phase extraction procedure was applied for the sample preparation. The tandem mass spectrometer was tuned in the multiple reaction monitoring mode to monitor the m/z 278.1-->234.9 and the m/z 288.1-->133.1 transitions for CDV and the internal standard 9-(2-phosphonylmethoxyethyl)guanine (PMEG), respectively, using negative electrospray ionization. The MS/MS response was linear over the concentration range from 78.125 ng/ml to 10,000 ng/ml, with a lower limit of quantification of 78.125 ng/ml. The intra- and inter-day precisions (relative standard deviation (%)) for CDV were less than 7.8% and the accuracies (% of deviation from nominal level) were within +/-12.1% for quality controls. The novel LC-MS/MS method allowed a specific, sensitive and reliable determination of CDV in human serum and was applied to investigate the yet unknown pharmacokinetic properties of CDV in a paediatric cancer patient.  相似文献   

7.
The present work reports capillary liquid chromatographic column switching methodology tailored for fast, sensitive and selective determination of 1-hydroxypyrene (1-OHP) in human urine using micro-electrospray ionization time-of-flight mass spectrometric detection. Samples (100 microl) of deconjugated, water diluted and filtered urine samples were loaded onto a 150 microm I.D.x 30 mm 10 microm Kromasil C(18) pre-column, providing on-line sample clean-up and analyte enrichment, prior to back flushed elution onto a 150 microm I.D.x 100 mm 3.5 microm Kromasil C(18) analytical column. Loading flow rates up to 100 microl/min in addition to the use of isocratic elution by a mobile phase composition of acetonitrile/water (70/30, v/v) containing 5 mM ammonium acetate provided elution of 1-OHP within 5.5 min and a total analysis time of less than 15 min with manual operation. Ionization was performed in the negative mode and 1-OHP was observed as [M-H](-) at m/z 217.08. The method was validated over the concentration range 0.2-40 ng/ml 1-OHP in pre-treated urine, yielding a coefficient of correlation of 0.997. The within-assay (n=6) and between-assay (n=6) precisions were in the range 6.4-7.3 and 7.0-8.1%, respectively, and the recoveries were in the range 96.2-97.5 within the investigated concentration range. The method mass limit of detection was 2 pg, corresponding to a 1-OHP concentration limit of detection of 20 pg/ml (0.09 nmol/l) diluted urine or 0.3 ng/ml (1.35 nmol/l) urine.  相似文献   

8.
We have determined three opioidmimetics (compounds I-III) in the rat brain dialysates after intraperitoneal (i.p.) administration of compounds I-III using a liquid chromatography/mass spectrometry with tandem mass spectrometry (LC-MS/MS). The dialysate samples with methanol were directly analyzed by online column-switching liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 421 of m/z 657 for compound I, m/z 421 of m/z 643 for compound II, and m/z 407 of m/z 629 for compound III) on LC-MS/MS with electrospray ionization (ESI), opioidmimetics in rat brain dialysates were determined. Calibration curves of the method showed a good linearity in the range of 10-100 ng/ml for each compound. The limit of determination was estimated to be ca. 1 ng/ml for compounds II and III, and ca. 5 ng/ml for compound I, respectively. The precision of analysis showed coefficients of variation ranging from 4.7 to 10.4% at compound III concentration (10-100 ng/ml) in Ringer's solution. As a result, the procedure proved to be very suitable for routine analysis. The method was applied to the analysis of three opioidmimetics in the brain dialysate samples from rats treated with these compounds.  相似文献   

9.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

10.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

11.
An ultra sensitive method for the direct measurement of 9-(2-phosphonylmethoxyethyl)adenine (PMEA), an antiviral agent for hepatitis B, in human serum using high performance liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed. This method involves the addition of [13C]PMEA (contains 5 13C) as internal standard, the purification and enrichment by a MCX solid phase extraction (SPE) cartridge, and quantitative analysis using LC-MS/MS. The MS/MS is selected to monitor the m/z 272 --> 134 and m/z 277 --> m/z 139 transitions for PMEA and [13C]PMEA, respectively, using negative electrospray ionization. The MS/MS response is linear over a concentration of 0.1-10 ng/ml with a lower limit of quantitation (LLOQ) of 0.1 ng/ml. The mean inter-assay accuracy (%Bias) for quality control (QC) at 0.1, 0.25, 1.0, and 10 ng/ml are 10, 1.6, -0.8, and 0.0%, respectively. The mean inter-assay precision (%CV) for the corresponding QCs is 3.9, 3.8, 5.3, and 3.4%, respectively. The method has been used to determine PMEA concentration in human serum following a single oral administration of a PMEA pro-drug at dose of 10 and 30 mg.  相似文献   

12.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

13.
A liquid chromatography tandem mass spectrometry assay for serum testosterone (T) and trideuterated testosterone (d(3)T) was developed in order to support clinical research studies that determine the pharmacokinetics, production rate, and clearance of testosterone by administration of trideuterated testosterone. After adding 19-nortestosterone as the internal standard (I.S.), sodium acetate buffer, and ether, to a serum aliquot, the mixture was shaken and centrifuged, and the ether was dried. The extract was reconstituted in methanol and 15 microl was injected into a liquid chromatograph equipped with an autosampler and Applied Biosystems-Sciex API 300 triple quadrupole mass spectrometer operated in the positive ion mode. T, d(3)T, and I.S. were monitored with transitions m/z 289 to m/z 97, m/z 292 to m/z 97, and m/z 275 to m/z 109, respectively. The two calibration curves were linear over the entire measurement range of 0-20 ng/ml for T and 0-2.0 ng/ml for d(3)T. The LOQs for T and d(3)T were 0.5 ng/ml and 0.05 ng/ml. The recoveries for T and d(3)T were 91.5 and 96.4%. For T at 1.25 ng/ml and 4.0 ng/ml, the intra-day precision (RSD, %) was 3.9 and 4.3% and intra-day accuracy 0.01 and 4.5%, respectively. The inter-day precision at these levels was 5.3 and 5.4% and inter-day accuracy was 1.9 and 0.3%. For d(3)T at 0.125 ng/ml and 0.4 ng/ml, the intra-day precision (RSD, %) was 2.8 and 8.3% and intra-day accuracy was 1.8 and 5.6%. The inter-day precision at these levels was 10.0 and 7.6% and inter-day accuracy was 5.7 and 3.4%. The concentrations of T in the 38 healthy subjects ranged from 2.5 to 14.0 ng/ml (mean 6.2 ng/ml).  相似文献   

14.
Sensitive methods based on capillary gas chromatography (GC) with mass spectrometric (MS) detection in a selected-ion monitoring mode (SIM) for the determination of a cyclooxygenase II (COX-II) inhibitor (3-isopropoxy-4-(4-methanesulfonylphenyl)-5,5'-dimethyl-5H-furan-2-one, I) in human plasma, in two concentration ranges of 0.1-20 and 5-1000 ng/ml, are described. Following liquid-liquid extraction, the residue, after evaporation of the organic phase to dryness, was reconstituted in acetonitrile (20 l) and part of the extract (1 l) was analyzed by GC/MS/SIM. The drug (I) and internal standard (II) were separated on a 25 mx0.2 mm capillary column with HP Ultra 1 (100% dimethylpolysiloxane, 0.33 m) phase and analyzed by MS/SIM monitoring ions at m/z 237 and 282 for I and II, respectively. The standard curve was linear within the lower concentration range of 0.1-20 ng/ml and the lower limit of quantification (LLOQ) in plasma was 0.1 ng/ml. Intraday coefficients of variation (CV, n=5) were 8.9, 4.2, 5.7, 3.1, 1.9, 1.9, and 4.4% at 0.1, 0.2, 0.5, 1.0, 5.0, 10, and 20 ng/ml, respectively. The standard curve was also linear within the higher concentration range of 5-1000 ng/ml and the LLOQ in plasma was 5 ng/ml. Intraday coefficients of variation (CV, n=5) were all below 9% at all concentrations within the standard curve range. The accuracy for I in human plasma was 91-112% and the recovery of I and II was greater than 70% at all concentrations within both standard curve ranges. The details of the assay methodology are presented.  相似文献   

15.
A liquid chromatography-mass spectrometry method is described for the determination of tetramethylpyrazine (TMP) and its active metabolite, 2-hydroxymethyl-3,5,6-trimethylpyrazine (HTMP) in dog plasma. This method involves a plasma clean-up step using protein precipitation procedure followed by LC separation and positive electrospray ionization mass spectrometry detection (ESI-MS). Chromatographic separation of the analytes was achieved on a C18 column using a mobile phase of methanol, water and acetic acid (50:50:0.6, v/v/v) at a flow rate of 1.0 ml/min. Selected ion monitoring (SIM) mode was used for analyte quantitation at m/z 137.2 for TMP, m/z 153.2 for HTMP and m/z 195.2 for caffeine. The linearity was obtained over the concentration ranges of 20-6000 ng/ml for TMP and 20-4000 ng/ml for HTMP and the lower limit of quantitation was 20 ng/ml for both analytes. For each level of QC samples, both inter- and intra-day precisions (R.S.D.) were 相似文献   

16.
A simple method using a one-step liquid-liquid extraction (LLE) with methyl-t-butyl ether (MTBE) followed by high-performance liquid chromatography (HPLC) with negative-ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of cilnidipine in human plasma using benidipine as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 491.1>121.8 for cilnidipine and m/z 504.2>122.1 for IS, respectively. Analytes were chromatographed on a CN column by isocratic elution using 10mM ammonium acetate buffer-methanol (30:70, v/v; adjusted with acetic acid to pH 5.0). Results were linear (r2=0.99998) over the studied range (0.1-20ng/ml) with a total LC-MS/MS analysis time per run of 3min. The developed method was validated and successfully applied to a cilnidipine bioequivalence study in 24 healthy male volunteers.  相似文献   

17.
A sensitive and selective liquid chromatography-tandem spectrometry method for the determination of zolmitriptan was developed and validated over the linearity range 0.05-30 ng/ml with 0.5 ml of plasma using diphenhydramine as the internal standard. Liquid-liquid extraction using a mixture of diethyl ether and dichloromethane was used to extract the drug and the internal standard from plasma. The mass spectrometer was operated under the selected reaction monitoring (SRM) mode using the atmospheric pressure chemical ionization (APCI) technique. The instrument parameters were optimized to obtain 3.0 min run time. The mobile phase consisted of acetonitrile-water-formic acid (70:30:0.5), at a flow rate of 0.5 ml/min. In positive mode, zolmitriptan produced a protonated precursor ion at m/z 288 and a corresponding product ion at m/z 58. And internal standard produced a protonated precursor ion at m/z 256 and a corresponding product ion at m/z 167. The inter- and intra-day precision (%R.S.D.) were less than 8.5% and accuracy (%error) was less than -2.5%. The method had a lower limit of quantification of 0.05 ng/ml for zolmitriptan, which offered increased sensitivity and selectivity of analysis, compared with existing methods. The method was successfully applied to a pharmacokinetic study of zolmitriptan after an oral administration of 5 mg zolmitriptan to 20 healthy volunteers.  相似文献   

18.
A rapid, sensitive and novel narrow-bore liquid chromatography-mass spectrometric method was developed and fully validated for the quantification of citalopram in human plasma. The analyte and internal standard (imipramine) were extracted by liquid-liquid extraction with a mixture of hexane-heptane-isopropanol (88:10:2, v/v/v). The use of a Hypersil BDS C(8) micro-bore column (250 mm x 2.1 mm i.d.; 3.5 microm particle size), results in substantial reduction in solvent consumption. The mobile phase consisted of 10 mM ammonium formate-formic acid (pH 4.5) and acetonitrile (30:70, v/v), pumped at a flow rate of 0.15 ml min(-1). The analytes were detected after positive electrospray ionization using the selected ion-monitoring mode of the species at m/z 325 for citalopram and m/z 281 for imipramine. The method had a chromatographic run time of 10.0 min and a linear calibration curve over the range 0.50-250 ng ml(-1) (r(2) > 0.996). The limit of quantitation was 0.50 ng ml(-1). Accuracy and precision were below the acceptance limits of 15%.  相似文献   

19.
A sensitive and selective liquid chromatography-tandem mass spectrometry method (LC-MS-MS) for the simultaneous estimation of bulaquine and primaquine has been developed and validated in monkey plasma. The mobile phase consisted of acetonitrile/ammonium acetate buffer (20 mM, pH 6) (50:50 v/v) at a flow-rate of 1 ml/min. The chromatographic separations were achieved on two spheri cyano columns (5 microm, 30 x 4.6 mm I.D.) connected in series. The quantitation was carried out using a Micromass LC-MS-MS with an electrospray source in the multiple reaction monitoring (MRM) mode. The analytes were quantified from the summed total ion value of their two most intense molecular transitions. This is another novel method leading to increased sensitivity and precision. A simple liquid-liquid extraction with 2 x 1.0 ml n-hexane/ethyl acetate/dimethyloctyl amine (90:10:0.05, v/v) was utilized. The method was validated in terms of recovery, linearity, accuracy and precision (within- and between-assay variation). The recoveries from spiked control samples were >or=90 and 50% for bulaquine and primaquine, respectively. Linearity in plasma was observed over a dynamic range of 1.56-400 and 3.91-1000 ng/ml for bulaquine and primaquine, respectively.  相似文献   

20.
A sensitive and specific high-performance liquid chromatographic assay with electrospray ionization mass spectrometry detection (LC-ESI-MS) has been developed and validated for the identification and quantification of the novel anticholinergic drug phencynonate in rat blood and urine. The sample pretreatment involves basification and iterative liquid-liquid extraction with ethyl ether-dichloromethane (2:1, v/v) solution, followed by LC separation and positive electrospray ionization mass spectrometry detection. The chromatography was on BetaBasic-18 column (150 mm x 2.1mm i.d., 3 microm). The mobile phase was composed of methanol-water (85:15, v/v), containing 0.5 per thousand formic acid, which was pumped at a flow-rate of 0.2 ml/min. Thiencynonate was selected as the internal standard (IS). Simultaneous MS detection of phencynonate and IS was performed at m/z 358.4 (phencynonate), m/z 364 (thiencynonate), and the selected reaction ion monitoring (SRM) of the two compounds was at 156. Phencynonate eluted at approximately 5.25 min, thiencynonate eluted at approximately 5.10 min and no endogenous materials interfered with their measurement. Linearity was obtained over the concentration range of 1-100 ng/ml in rat blood and 1-500 ng/ml in rat urine. The lower limit of quantification (LLOQ) was reproducible at 1 ng/ml in both of rat blood and urine. The precision measured was obtained from 2.92 to 9.76% in rat blood and 4.17 to 9.76% in rat urine. Extraction recoveries were in the range of 69.57-79.49% in blood and 56.85-64.86% in urine. This method was successfully applied to the identification and quantification of phencynonate in pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号