首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beneficial effects of in vivo injections (200 mg/kg, twice daily) or in vitro perfusion (5.0 mM) of L-carnitine on an intrinsic abnormality in energy metabolism was investigated in isolated, perfused diabetic rat heart. Hearts were aerobically perfused for 60 min with elevated fatty acid substrate to simulate diabetic conditions. Phosphorus-31 nuclear magnetic resonance spectroscopy revealed a temporal decline in myocardial ATP levels (to approx 82%) during perfusion of diabetic hearts, but not in control hearts. This reduction was prevented by prior treatment in vivo with L-carnitine or by providing L-carnitine acutely in the perfusion medium. Chemical analysis of tissue extracts indicated that L-carnitine injections were effective in replenishing the decrease in total myocardial carnitine content which was present in diabetic hearts and in preventing the accumulation of long chain fatty acyl CoA. Perfusion with L-carnitine also attenuated the elevation of long chain fatty acyl CoA in diabetic hearts. This study gives additional support to the hypothesis that decreases in ATP which occur in the isolated, perfused diabetic heart are correlated with a concomitant elevation in long chain fatty acyl CoA, a known inhibitor of adenine nucleotide translocase. In the presence of elevated exogenous fatty acids, a primary deficiency in the total myocardial carnitine pool would result in elevations in tissue concentrations of long chain fatty acyl CoA since carnitine is a required carrier for transport of fatty acids into mitochondria. Replenishment of the carnitine in vivo was shown to be sufficient to prevent subsequent alteration in long chain fatty acyl CoA and ATP in isolated perfused diabetic hearts despite the burden of elevated fatty acid substrates.  相似文献   

2.
L-Carnitine transport and free fatty acid oxidation have been studied in hearts of rats with 3-month-old aorto-caval fistula. For carnitine transport experiments, the hearts were perfused via the ascending aorta with a bicarbonate buffer containing 11 mM glucose and variable concentrations L-[14C]carnitine (10-200 microM). In some experiments, the active component of carnitine transport was suppressed by the adjunction of 0.05 mM mersalyl acid. The subtraction of passive from total transport allowed reconstruction of the saturation curves of the carrier-mediated transport of L-carnitine. Our data suggest that at a physiological carnitine concentration (50 microM), the rate of [14C]carnitine accumulation was significantly depressed in mechanically overloaded hearts. In addition, according to Lineweaver-Burk analysis, the affinity of the membrane carrier for L-carnitine was considerably diminished (Km carnitine 125 instead of 83 microM, Vmax unchanged). The above alterations of L-carnitine transport did not result from a decrease of the transmembrane gradient of sodium, since the intracellular Na+ content of the hypertrophied hearts was quite similar to that of control hearts. The ability of atrially perfused, working hearts to oxidize the exogenous free fatty acids was assessed from 14CO2 production obtained in the presence of [U-14C]palmitate or [1-14C]octanoate. The total 14CO2 production, expressed per min per g dry weight, was significantly diminished in hearts from rats with the aorto-caval fistula if 1.2 mM palmitate was used. On the other hand, in the presence of 2.4 mM octanoate, a substrate which circumvents the carnitine-acylcarnitine translocase, no such reduction of the 14CO2 production could be detected. Our results suggest that the decrease of L-carnitine transport, resulting in a significant depression of tissue carnitine, may impair long-chain fatty acid activation and/or translocation into mitochondria. In contrast, the oxidation of short-chain fatty acids, the activation of which takes place directly in mitochondrial matrix, is not limited in volume-overloaded hearts.  相似文献   

3.
Experiments were performed to further elucidate the role of gamma-amino-beta-hydroxybutyric acid trimethylbetaine (carnitine) on the metabolism and functions of spermatozoa. Addition of 20 mM L-carnitine to suspensions of ejaculated bovine spermatozoa resulted in an increase of cellular calcium transport, whereas 20 mM L-aminocarnitine (an inhibitor of carnitine palmitoyltransferase) caused an inhibition of this process. Both L-carnitine and L-aminocarnitine inhibited the progressive motility of spermatozoa, and the oxygen consumption as well as the release of the enzymes hyaluronidase and glutamate-oxaloacetate transaminase from spermatozoa. Labeled carnitine was rapidly taken up by spermatozoa by a process strongly dependent on temperature and extracellular concentration of carnitine. It is concluded that the effects produced by high concentrations of carnitine or aminocarnitine are mainly due to interactions of these compounds with the cellular membranes of spermatozoa.  相似文献   

4.
L-Carnitine facilitates the transport of fatty acids into the mitochondrial matrix where they are used for energy production. Recent studies have shown that L-carnitine is capable of protecting the heart against ischemia/reperfusion injury and has beneficial effects against Alzheimer's disease and AIDS. The mechanism of action, however, is not yet understood. In the present study, we found that in Jurkat cells, L-carnitine inhibited apoptosis induced by Fas ligation. In addition, 5 mM carnitine potently inhibited the activity of recombinant caspases 3, 7 and 8, whereas its long-chain fatty acid derivative palmitoylcarnitine stimulated the activity of all the caspases. Palmitoylcarnitine reversed the inhibition mediated by carnitine. Levels of carnitine and palmitoyl-CoA decreased significantly during Fas-mediated apoptosis, while palmitoylcarnitine formation increased. These alterations may be due to inactivation of beta-oxidation or to an increase in the activity of the enzyme that converts carnitine to palmitoylcarnitine, carnitine palmitoyltransferase I (CPT I). In support of the latter possibility, fibroblasts deficient in CPT I activity were relatively resistant to staurosporine-induced apoptosis. These observations suggest that caspase activity may be regulated in part by the balance of carnitine and palmitoylcarnitine.  相似文献   

5.
L-Carnitine transport by rat renal brush border membrane vesicles was stimulated by a Na+ gradient (extravesicular greater than intravesicular). Total carnitine entry was 2.7 and 3.2 times higher at 15 S in the presence of a 100 mM NaCl gradient than when the vesicles were incubated isoosmotically in buffered 100 mM KCl or buffered mannitol, respectively. Specific carnitine transport (total entry minus contribution from diffusion) was stimulated 3.6- and 5.7-fold, respectively. An "overshoot" was observed for total carnitine entry in the presence of a Na+ gradient but not in the presence of a K+ gradient or in the absence of an ion gradient. L-Carnitine transport was saturable. KT and Vmax for total carnitine transport were 0.11 mM and 11.6 pmol S-1 mg protein-1, respectively, and for Na+-gradient-dependent carnitine transport, 0.055 mM and 5.09 pmol S-1 mg protein-1, respectively. The transport process was structure-specific for a quaternary nitrogen and carboxyl groups attached by a 4- to 6-carbon chain, but without other charged functional groups. Other evidence for a carrier-mediated process included trans-stimulation of transport by intravesicular carnitine and a peak of activity at near physiological temperature. Kinetic data derived from this study, coupled with data from previous physiological studies from this laboratory, suggests that carnitine transport by the brush border membrane is not limiting for carnitine reabsorption. Dietary carnitine (1% of diet for 10 days) reduced by 52% the rate of carnitine transport across the brush border membrane in vitro, without affecting rates of D-glucose, L-lysine, L-glutamic acid, or L-alanine transport. Down-regulation of carnitine transport may prevent excessive or toxic accumulation of L-carnitine in renal tubular cells exposed to high extracellular carnitine concentrations.  相似文献   

6.
Renal carnitine metabolism was studied in isolated kidney cortex tubules from fed rats. The tubular distribution of free carnitine (C), acid-soluble short chain acylcarnitine (AcC), and total acid-soluble carnitine was measured. The content of the last-mentioned in rat cortical tubule suspensions was 2.85 +/- 0.15 nmol/mg protein, 46% representing AcC. In the absence of metabolic substrates the AcC/C ratio declined from 0.84 to 0.48 during incubation. The administration of 2mM acetoacetate or 2mM 3-hydroxybutyrate caused an increase in AcC by 45% and 51%, respectively. The rise in AcC was paralleled by a decrease in C, resulting in an increase of the tubular AcC/C ratio to 1.69 and 1.85, respectively. In the presence of 1 mM exogenous L-carnitine 35 +/- 6 nmol AcC/(mg protein X h) was formed. The addition of acetoacetate and 3-hydroxybutyrate led to a 3.5 to 3.8-fold rise in AcC formation. Other substrates which are likewise metabolized by proximal tubules were less effective. More than 90% of the formed AcC was recovered in the extracellular fluid. The results suggest that proximal renal tubule cells are the intrarenal site of carnitine acylation and may be involved in the regulation of blood and/or urinary carnitine acylation state.  相似文献   

7.
Carnitine acetyltransferase (CrAT; EC 2.3.1.7) catalyzes the reversible transfer of acetyl groups between acetyl-coenzyme A (acetyl-CoA) and L-carnitine; it also regulates the cellular pool of CoA and the availability of activated acetyl groups. In this study, biochemical measurements, saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, and molecular docking were applied to give insights into the CrAT binding of a synthetic inhibitor, the cardioprotective drug mildronate (3-(2,2,2-trimethylhydrazinium)-propionate). The obtained results show that mildronate inhibits CrAT in a competitive manner through binding to the carnitine binding site, not the acetyl-CoA binding site. The bound conformation of mildronate closely resembles that of carnitine except for the orientation of the trimethylammonium group, which in the mildronate molecule is exposed to the solvent. The dissociation constant of the mildronate CrAT complex is approximately 0.1?mM, and the Ki is 1.6?mM. The results suggest that the cardioprotective effect of mildronate might be partially mediated by CrAT inhibition and concomitant regulation of cellular energy metabolism pathways.  相似文献   

8.
D-Carnitine was converted to L-carnitine by resting and permeabilized cells as well as with purified stereospecific carnitine dehydrogenases from Agrobacterium sp. With permeabilized cells only 11% of D-carnitine was converted into L-carnitine. Using highly stereospecific D- and L-carnitine dehydrogenases from Agrobacterium sp. (pH 8.5, 50 mM D-carnitine, 1 mM NAD + , 0.1 mM NADH, 25-fold excess of L-carnitine dehydrogenase) almost 50% of the D-carnitine could be converted into L-carnitine.  相似文献   

9.
L-carnitine is an essential cofactor for the transport of fatty acids across the mitochondrial membranes. L-carnitine can be provided by food products or biosynthesized in the liver. After intestinal absorption or hepatic biosynthesis, L-carnitine is transferred to organs whose metabolism is dependent upon fatty acid oxidation, such as the skeletal muscle and the heart. The intracellular transport of L-carnitine into the cell requires specific transporters and today, several of these have been characterized. Most of them belong to the solute carrier family. Heart is one of the major target for carnitine transport and use, however basic properties of carnitine uptake by heart cells have never been studied. In this paper, the transport of L-carnitine by rat heart explants has been examined and the kinetic properties of this transport determined and compared to data obtained in skeletal muscle explants. As in muscle, L-carnitine uptake by heart cells was shown to be dependent on sodium and was inhibited by L-carnitine analogues. Molecules known to interact with the skeletal muscle L-carnitine transport were studied in the heart. While trimethyl hydrazinium propionate (THP) was shown to fully inhibit the L-carnitine uptake by muscle cells, it remained inefficient in inhibiting the L-carnitine uptake by heart cells. On the other hand, compounds such as verapamil and AZT were both able to inhibit both the skeletal muscle and the cardiac uptake of L-carnitine. These data suggested that the muscle and heart systems for L-carnitine uptake exhibited different systems of regulation and these results have to be taken in consideration while administrating those compounds that can alter l-carnitine uptake in the muscle and the heart and can lead to damage to these tissues.  相似文献   

10.
Peroxisomes, also termed as microbodies, are now known to carry out several specialized metabolic activities that are vital to cellular function. A defect in peroxisomal function leads to development of a fatal human disease, and a number of peroxisomal disorders are now linked to inherited peroxisomal enzyme abnormalities. Peroxisomal enzyme activities are also altered during pathophysiological conditions through various endogenously produced bio-molecules such as nitric oxide (NO). NO produced by cytokines or NO-donors is known to modulate peroxisomal functions, and these effects of NO are mediated through cGMP. We are reporting for the first time that L-carnitine (1-5 mm) prevents cGMP-mediated impairment of peroxisomal enzyme activities. Cyclic GMP (250-1000 muM) significantly inhibited (p < 0.01) the specific activities of catalase, acyl CoA oxidase and dihydroxyacetone-phosphate acyltransferase (DHAPATase) in human dermal fibroblasts, and treatment of cells with 1-5 mM of carnitine significantly (p < 0.001) reduced the inhibitory effects of cGMP on peroxisomal enzyme activities. These findings suggest that carnitine, previously thought to participate only in fatty acid oxidation, may in fact be regulating other cellular events including oxidative stress, and could possibly be used to correct cytokine-impaired peroxisomal functions. Copyright (c) 2004 John Wiley & Sons, Ltd.  相似文献   

11.
L-Carnitine (L-beta-hydroxy-gamma-N,N,N-trimethylaminobutyric acid) plays an essential role in fatty acid transport in the mitochondrion. Conditions that appear to benefit from exogenous supplementation of L-carnitine include anorexia, chronic fatigue, cardiovascular disease, hypoglycemia, male infertility, muscular myopathies, renal failure and dialysis. D-Carnitine is not biologically active and might interfere with the proper utilization of the L isomer, and so there are claims that the racemic mixture (DL-carnitine) should be avoided. Despite the fact that it is known about the systemic manifestations of oral intake of this compound, oral supplementation with DL-carnitine for treatment of primary and secondary carnitine deficiency syndromes has been used in Russia for 25 years. The purpose of the present review was to contrast the differences in pharmacokinetics, phannacodynamics, biochemistry, and toxicity between treatments of L- and DL-carnitine. There is some evidence that L-carnitine and D-carnitine compete for uptake in small intestine and tubular re-absorption in kidneys. After intestinal absorption, L- and D-carnitine is transferred to organs whose metabolism is dependent on fatty acid oxidation, such as heart and skeletal muscle, and D-carnitine competitively depletes muscle level of L-carnitine. Whereas L-carnitine is found to be essential for the oxidation of fatty acids, D-carnitine causes a depletion of L-carnitine, and hindered fatty acid oxidation and energy formation. Pharmacological effects of carnitine are stereospecific, since L-carnitine was effective in various animals and clinical studies, while D- and DL-carnitine was found to be ineffective or toxic, for example, to muscle cells and to the myocardium. DL-Carnitine causes symptoms of myasthenia and cardiac arrhythmias, which disappeared after L-carnitine administration. Clinically toxic effect of D-carnitine was described in patients with renal failure on long-term haemodialysis, in adriamycin (doxorubicin) cardiotoxicity and in stable angina pectoris.  相似文献   

12.
The study aimed to examine whether L-carnitine and its derivatives, acetyl-L-carnitine and propionyl-L-carnitine, were equally effective and able to improve postischemic cardiac function, reduce the incidence of reperfusion-induced ventricular fibrillation, infarct size, and apoptotic cell death in ischemic/reperfused isolated rat hearts. There are several studies indicating that L-carnitine, a naturally occurring amino acid and an essential cofactor, can improve mechanical function and substrate metabolism not only in hypertrophied or failing myocardium but also in ischemic/reperfused hearts. The effects of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine, on the recovery of heart function, incidence of reperfusion-induced ventricular fibrillation (VF), infarct size, and apoptotic cell death after 30 min ischemia followed by 120 min reperfusion were studied in isolated working rat hearts. Hearts were perfused with various concentrations of L-carnitine (0.5 and 5 mM), acetyl-L-carnitine (0.5 and 5 mM), and propionyl-L-carnitine (0.05, 0.5, and 5 mM), respectively, for 10 min before the induction of ischemia. Postischemic recovery of CF, AF, and LVDP was significantly improved in all groups perfused with 5 mM of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine. Significant postischemic ventricular recovery was noticed in the hearts perfused with 0.5 mM of propionyl-L-carnitine, but not with the same concentration of L-carnitine or L-acetyl carnitine. The incidence of reperfusion VF was reduced from its control value of 90 to 10% (p < 0.05) in hearts perfused with 5 mM of propionyl-L-carnitine only. Other doses of various carnitines failed to reduce the incidence of VF. The protection in CF, AF, LVDP, and VF reflected in a reduction in infarct size and apoptotic cell death in hearts treated with various concentrations of carnitine derivatives. The difference between effectiveness of various carnitines on the recovery of postischemic myocardium may be explained by different membrane permeability properties of carnitine and its derivatives.  相似文献   

13.
The purpose of this study was to investigate the effects of L-carnitine on the hemodynamic parameters of Langendorff hearts. Isolated rat hearts were perfused with various solutions containing high or low concentrations of fatty acids, additional glucose or no glucose, and L-carnitine or no L-carnitine. The most interesting part of the experiments was the behaviour of the hearts in the reperfusion period after no-flow ischemia of 20 min. The results were: (1) With glucose and high fatty acid concentrations the hearts showed an improved recovery of the left ventricular functions in the reperfusion period compared with low fatty acid concentrations. Without glucose the left ventricular pressure is much lower in the reperfusion period. (2) Addition of L-carnitine improved the recovery of the ischemically damaged hearts. This improvement is especially impressive at low fatty acid concentrations. L-carnitine addition at high fatty acid concentrations but without glucose strongly improved reperfusion behaviour. (3) The coronary flow is increased by 2 experimental conditions: (i) perfusion at low levels of fatty acids, carnitine and with glucose and (ii) high levels of fatty acids and carnitine but without glucose. These findings suggest that supplementation of L-carnitine has a beneficial effect on the isolated heart under various conditions, and possibly on specific human heart diseases.  相似文献   

14.
In this work, an attempt was made to identify the reasons of impaired long-chain fatty acid utilization that waspreviously described in volume-overloaded rat hearts. The most significant data are the following: (1) The slowing down of long-chain fatty acid oxidation in severely hypertrophied hearts cannot be related to a feedback inhibition of carnitine palmitoyltransferase I from an excessive stimulation of glucose oxidation since, because of decreased tissue levels of L-carnitine, glucose oxidation also declines in volume-overloaded hearts. (2) While, in control hearts, the estimated intracellular concentrations of free carnitine are in the range of the respective Km of mitochondrial CPT I, a kinetic limitation of this enzyme could occur in hypertrophied hearts due to a 40% decrease in free carnitine. (3) However, the impaired palmitate oxidation persists upon the isolation of the mitochondria from these hearts even in presence of saturating concentrations of L-carnitine. In contrast, the rates of the conversion of both palmitoyl-CoA and palmitoylcarnitine into acetyl-CoA are unchanged. (4) The kinetic analyses of palmitoyl-CoA synthase and carnitine palmitoyltransferase I reactions do not reveal any differences between the two mitochondrial populations studied. On the other hand, the conversion of palmitate into palmitoylcarnitine proves to be substrate inhibited already at physiological concentrations of exogenous palmitate. The data presented in this work demonstrate that, during the development of a severe cardiac hypertrophy, a fragilization of the mitochondrial outer membrane may occur. The functional integrity of this membrane seems to be further deteriorated by increasing concentrations of free fatty acids which gives rise to an impaired functional cooperation between palmitoyl-CoA synthase and carnitine palmitoyltransferase I. In intact myocardium, the utilization of the generated in situ palmitoyl-CoA can be further slowed down by decreased intracellular concentrations of free carnitine.  相似文献   

15.
In rats receiving a fat diet (75% Altromin R and 25% olive oil) ad libitum for 15 hours, an orally administered dose of 500 mg/kg L-carnitine produces: an increase in serum carnitine and acetyl-carnitine levels; a decrease in serum triglyceride (TG) and free fatty acid (FFA) levels; a normalization of the heart and liver carnitine pattern; a reduction of myocardial neutral lipase (NL) activity, without affecting lipoprotein lipase (LPL) of the heart. Under these experimentally-induced conditions, L-carnitine stimulates the excretion of acyl groups as acyl-carnitines with the urine. Acylcarnitines are practically absent from the urine of control animals.  相似文献   

16.
The role of fatty acid metabolism in chemical-dependent cell injury is poorly understood. Addition of L-carnitine to the incubation medium of cultured hepatocytes delayed cell killing initiated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Protection by L-carnitine was stereospecific and observed as late as 1 h following addition of MPTP. D-Carnitine, but not iodoacetate, reversed the L-carnitine effect. Monoamine oxidase A and B activities, MPTP/N-methyl-4-phenyl-pyridinium levels, and MPTP-dependent loss of mitochondrial membrane potential measured by release of [3H]triphenylmethylphosphonium were not altered by addition of L-carnitine. Significant changes in MPTP-induced depletion of total cellular ATP did not occur with excess L-carnitine. Although the mechanism of cytoprotection exerted by L-carnitine remains unresolved, the data suggest that L-carnitine does not significantly alter: (i) mitochondrial-dependent bioactivation of MPTP; (ii) MPTP-dependent loss of mitochondrial membrane potential; or (iii) MPTP-mediated depletion of total cellular ATP content. We conclude that alterations of fatty acid metabolism may contribute to the toxic consequences of exposure to MPTP. Moreover, the lack of L-carnitine-mediated cytoprotection of monolayers incubated with 4-phenylpyridine or potassium cyanide suggests: (i) a link between fatty acid metabolism and mitochondrial membrane-mediated, bioactivation-dependent cell killing; and (ii) that inhibition of NADH dehydrogenase may not totally explain the mechanism of MPTP cytotoxicity.  相似文献   

17.
Spermatozoan maturation, motility, and fertility are, in part, dependent upon the progressive increase in epididymal and spermatozoal carnitine, critical for mitochondrial fatty acid oxidation, as sperm pass from the caput to the cauda of the epididymis. We demonstrate that the organic cation/carnitine transporters, OCTN1, OCTN2, and OCTN3, are expressed in sperm as three distinct proteins with an expected molecular mass of 63 kDa, using Western blot analysis and our transporter-specific antibodies. Carnitine uptake studies in normal control human sperm samples further support the presence of high-affinity (OCTN2) carnitine uptake (K(m) of 3.39+/-1.16 microM; V(max) of 0.23+/-0.14 pmol/min/mg sperm protein; and mean+/-SD; n=12), intermediate-affinity (OCTN3) carnitine uptake (K(m) of 25.9+/-14.7 microM; V(max) of 1.49+/-1.03 pmol/min/mg protein; n=26), and low-affinity (OCTN1) carnitine uptake (K(m) of 412.6+/-191 microM; V(max) of 32.7+/-20.5 pmol/min/mg protein; n=18). Identification of individuals with defective sperm carnitine transport may provide potentially treatable etiologies of male infertility, responsive to L-carnitine supplementation.  相似文献   

18.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

19.
Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.  相似文献   

20.
Duchenne muscular dystrophy (DMD) arises as a consequence of mutations in the dystrophin gene. Dystrophin is a membrane-spanning protein that connects the cytoskeleton and the basal lamina. The most distinctive features of DMD are a progressive muscular dystrophy, a myofiber degeneration with fibrosis and metabolic alterations such as fatty infiltration, however, little is known on lipid metabolism changes arising in Duchenne patient cells. Our goal was to identify metabolic changes occurring in Duchenne patient cells especially in terms of L-carnitine homeostasis, fatty acid metabolism both at the mitochondrial and peroxisomal level and the consequences on the membrane structure and function. In this paper, we compared the structural and functional characteristics of DMD patient and control cells. Using radiolabeled L-carnitine, we found, in patient muscle cells, a marked decrease in the uptake and the intracellular level of L-carnitine. Associated with this change, a decrease in the mitochondrial metabolism can be seen from the analysis of mRNA encoding for mitochondrial proteins. Probably, associated with these changes in fatty acid metabolism, alterations in the lipid composition of the cells were identified: with an increase in poly unsaturated fatty acids and a decrease in medium chain fatty acids, mono unsaturated fatty acids and in cholesterol contents. Functionally, the membrane of cells lacking dystrophin appeared to be less fluid, as determined at 37°C by fluorescence anisotropy. These changes may, at least in part, be responsible for changes in the phospholipids and cholesterol profile in cell membranes and ultimately may reduce the fluidity of the membrane. A supplementation with L-carnitine partly restored the fatty acid profile by increasing saturated fatty acid content and decreasing the amounts of MUFA, PUFA, VLCFA. L-carnitine supplementation also restored muscle membrane fluidity. This suggests that regulating lipid metabolism in DMD cells may improve the function of cells lacking dystrophin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号