首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
3'-Deoxydadenosine was found to be a potent inhibitor of nucleoside-stimulated protein kinase activity from culture forms of Trypanosoma cruzi and bloodstream forms of Trypanosoma gambiense. The type of inhibition by 3'-deoxyadenosine was competitive with respect to ATP. The inhibition constants for 3'-deoxyadenosine were determined to be 0.11mM and 0.085mM for the enzyme from T. cruzi and T. gambiense, respectively. The apparent Km value for ATP was 0.2mM for both enzymes. 2'-Deoxyadenosine was less effective as inhibitor of the protein kinase activity. The inhibition constants were calculated to be 0.8mM and 0.67mM, respectively.  相似文献   

2.
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.  相似文献   

3.
alpha-glycerophosphate dehydrogenase (alpha-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.  相似文献   

4.
This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity.  相似文献   

5.
From Trypanosoma cruzi, the causative agent of Chagas' disease, a lipoamide dehydrogenase was isolated. The enzyme, an FAD-cystine oxidoreductase, shares many physical and chemical properties with T. cruzi trypanothione reductase, the key enzyme of the parasite's thiol metabolism. 1. From 60 g epimastigotic T. cruzi cells, 2.7 mg lipoamide dehydrogenase was extracted. The flavoenzyme was purified 3000-fold to homogeneity with an overall yield of 26%. 2. The enzyme is a dimer with a subunit Mr of 55,000. With 1 mM lipoamide (Km approximately 5 mM) and 100 microM NADH (Km = 23 microM), the specific activity at pH 7.0 is 297 U/mg. 3. With excess NADH, the enzyme is reduced to the EH2.NADH complex and, by addition of lipoamide, it is reoxidized, indicating that it can cycle between the oxidized state E and the two-electron-reduced state, EH2. 4. As shown by N-terminal sequencing of the enzyme, 21 out of 30 positions are identical with those of pig heart and human liver lipoamide dehydrogenase. The sequenced section comprises the GGGPGG stretch, which represents the binding site for the pyrophosphate moiety of FAD. 5. After reduction of Eox to the two-electron-reduced state, the enzyme is specifically inhibited by the nitrosourea drug 1,3-bis(2-chloroethyl)-1-nitrosourea (Carmustine), presumably by carbamoylation at one of the nascent active-site thiols. 6. Polyclonal rabbit antibodies raised against T. cruzi lipoamide dehydrogenase and trypanothione reductase are specific for the respective enzyme, as shown by immunoblots of the pure proteins and of cell extracts.  相似文献   

6.
Phosphoenolpyruvate (PEP) mutase catalyzes the conversion of phosphoenolpyruvate to phosphonopyruvate, the initial step in the formation of many naturally occurring phosphonate compounds. The phosphonate compound 2-aminoethylphosphonate is present as a component of complex carbohydrates on the surface membrane of many trypanosomatids including glycosylinositolphospholipids of Trypanosoma cruzi. Using partial sequence information from the T. cruzi genome project we have isolated a full-length gene with significant homology to PEP mutase from the free-living protozoan Tetrahymena pyriformis and the edible mussel Mytilus edulis. Recombinant expression in Escherichia coli confirms that it encodes a functional PEP mutase with a Km apparent of 8 microM for phosphonopyruvate and a kcat of 12 s-1. The native enzyme is a homotetramer with an absolute requirement for divalent metal ions and displays negative cooperativity for Mg2+ (S0.5 0.4 microM; n = 0.46). Immunofluorescence and sub-cellular fractionation indicates that PEP mutase has a dual localization in the cell. Further evidence to support this was obtained by Western analysis of a partial sub-cellular fractionation of T. cruzi cells. Southern and Western analysis suggests that PEP mutase is unique to T. cruzi and is not present in the other medically important parasites, Trypanosoma brucei and Leishmania spp.  相似文献   

7.
The activities of the mitochondrial enzymes citrate synthase (citrate oxaloacetatelyase, EC 4.1.3.7), NADP-linked isocitrate dehydrogenase (threo-Ds-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42), and succinate dehydrogenase (succinate: FAD oxidoreductase, EC 1.3.99.1) as well as their kinetic behavior in the two developmental forms of Trypanosoma cruzi at insect vector stage, epimastigotes and infective metacyclic trypomastigotes, were studied. The results presented in this work clearly demonstrate a higher mitochondrial metabolism in the metacyclic forms as is shown by the extraordinary enhanced activities of metacyclic citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. In epimastigotes, the specific activities of citrate synthase at variable concentrations of oxalacetate and acetyl-CoA were 24.6 and 26.6 mU/mg of protein, respectively, and the Michaelis constants were 7.88 and 6.84 microM for both substrates. The metacyclic enzyme exhibited the following kinetic parameters: a specific activity of 228.4 mU/mg and Km of 3.18 microM for oxalacetate and 248.5 mU/mg and 2.75 microM, respectively, for acetyl-CoA. NADP-linked isocitrate dehydrogenase specific activities for epimastigotes and metacyclics were 110.2 and 210.3 mU/mg, whereas the apparent Km's were 47.9 and 12.5 microM, respectively. No activity for the NAD-dependent isozyme was found in any form of T. cruzi differentiation. The particulated succinate dehydrogenase showed specific activities of 8.2 and 39.1 mU/mg for epimastigotes and metacyclic trypomastigotes, respectively, although no significant changes in the Km (0.46 and 0.48 mM) were found. The cellular role and the molecular mechanism that probably take place during this significant shift in the mitochondrial metabolism during the T. cruzi differentiation have been discussed.  相似文献   

8.
1. Glucose 6-phosphate dehydrogenase activity (EC 1.1.1.49) of two morphological forms of Trypanosoma cruzi, epimastigotes and metacyclics, are reported. 2. The kinetic behaviour and some of the kinetic parameters of the enzyme in both forms were studied. The enzymes showed a simple Michaelis-Menten kinetic. 3. The activity in epimastigote forms was alway higher than the metacyclic ones. At subsaturating concentrations of substrate was almost 10-fold higher, whereas at saturating concentrations was about 2-fold higher. 4. In epimastigote forms the specific activity and Km values, at pH 7.5 and 37 degrees C, was found to be 142 mUnits x mg-1 of protein and 0.23 mM, respectively. 5. In the same conditions, the specific activity and Km values in metacyclic forms was 75 mUnits x mg-1 of protein and 1.06 mM, respectively. 6. A possible role in the carbohydrate metabolism of glucose 6-phosphate dehydrogenase in both forms of Trypanosoma cruzi is discussed.  相似文献   

9.
1. Subcellular fractions obtained from epimastigotes of Trypanosoma cruzi, disrupted by three different procedures, contained in addition to the already known Mg2+-activated adenosine triphosphatase (ATPase; E.C.3.6.1.4), a Ca2+-ATPase activity. 2. The Ca2+-ATPase (a) was activated by low concentrations of CaCl2 (apparent Ka, 80 microM); (b) had a Km for ATP of 0.6 mM (at 1 mM CaCl2, pH 8.0); (c) presented a broad pH curve (optimum 7.1-8.6); and (d) was insensitive to oligomycin concentrations which inhibited the Mg2+-ATPase present in the same preparations. 3. All attempts to find a (Na+-K+)-activated, ouabain-inhibited, ATPase have been unsuccessful, in spite of the fact that living epimastigoes of T. cruzi are able to concentrate K+ and exclude Na+ from the medium.  相似文献   

10.
The phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) of the epimastigote form of Trypanosoma (Schizotrypanum) cruzi has been purified to homogeneity. The enzyme is composed of two apparently identical 42,000 +/- 500 subunits, is highly specific for adenine nucleotides, and has a strict requirement of Mn2+ ions for activity; the activation of the enzyme by ionic Mn2+ reveals that one Mn2+ ion required for each 42,000 subunit. Hyperbolic kinetics are observed for all substrates in the carboxylation reaction with Km (phosphoenolpyruvate) of 0.36 +/- 0.08 mM, Km (HCO-3) of 3.7 +/- 0.2 mM, and Km (Mg-ADP) of 39 +/- 1 microM. In the decarboxylation reaction the kinetics with respect to oxalacetic acid are also hyperbolic with a Km of 27 +/- 3 microM, but towards Mg-ATP there is a biphasic response: hyperbolic at low (less than 250 microM) concentrations with a Km of 39 +/- 1 microM, but at higher concentrations the nucleotide produces a strong inhibition of the enzyme activity. This inhibition is also observed with Mg-GTP and Mg-ITP which are not substrates of the reaction. The results are consistent with an important regulatory function of the enzyme in the amino-acid catabolism of T. cruzi.  相似文献   

11.
Proline racemase catalyzes the interconversion of L- and D-proline enantiomers and has to date been described in only two species. Originally found in the bacterium Clostridium sticklandii, it contains cysteine residues in the active site and does not require co-factors or other known coenzymes. We recently described the first eukaryotic amino acid (proline) racemase, after isolation and cloning of a gene from the pathogenic human parasite Trypanosoma cruzi. Although this enzyme is intracellularly located in replicative non-infective forms of T. cruzi, membrane-bound and secreted forms of the enzyme are present upon differentiation of the parasite into non-dividing infective forms. The secreted form of proline racemase is a potent host B-cell mitogen supporting parasite evasion of specific immune responses. Here we describe that the TcPRAC genes in T. cruzi encode functional intracellular or secreted versions of the enzyme exhibiting distinct kinetic properties that may be relevant for their relative catalytic efficiency. Although the Km of the enzyme isoforms were of a similar order of magnitude (29-75 mM), Vmax varied between 2 x 10(-4 )and 5.3 x 10(-5) mol of L-proline/s/0.125 microM of homodimeric recombinant protein. Studies with the enzyme-specific inhibitor and abrogation of enzymatic activity by site-directed mutagenesis of the active site Cys330 residue reinforced the potential of proline racemase as a critical target for drug development against Chagas' disease. Finally, we propose a protein signature for proline racemases and suggest that the enzyme is present in several other pathogenic and non-pathogenic bacterial genomes of medical and agricultural interest, yet absent in mammalian host, suggesting that inhibition of proline racemases may have therapeutic potential.  相似文献   

12.
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 ? movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k(cat). Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.  相似文献   

13.
The presence of arginine decarboxylase (ADC) enzymatic activity in Trypanosoma cruzi epimastigotes is still a matter of controversy due to conflicting results published during the last few years. We have investigated whether arginine might indeed be a precursor of putrescine via agmatine in these parasites. We have shown that wild-type T. cruzi epimastigotes cultivated in a medium almost free of polyamines stopped their growth after several repeated passages of cultures in the same medium, and that neither arginine nor omithine were able to support or reinitiate parasite multiplication. In contrast, normal growth was quickly resumed after adding exogenous putrescine or spermidine. The in vivo labelling of parasites with radioactive arginine showed no conversion of this amino acid into agmatine, and attempts to detect ADC activity measured by the release of CO2 under different conditions in T. cruzi extracts gave negligible values for all strains assayed. The described data clearly indicate that wild-type T. cruzi epimastigotes lack ADC enzymatic activity.  相似文献   

14.
Polyamines are known to play an essential role in cell growth and differentiation. In animals, putrescine is mainly synthesized from ornithine by ornithine decarboxylase (ODC). In higher plants and in bacteria putrescine can also be synthesized from arginine by arginine decarboxylase (ADC). In this paper we report the presence of significant levels of ADC activity in crude extracts of Trypanosoma cruzi, RA strain epimastigotes. ADC activity was detected during a very narrow time range, corresponding to the early logarithmic growth phase. This activity was inhibited by DL-alpha-difluoromethylarginine, a specific irreversible inhibitor of ADC and activated by DL-alpha-difluoromethylornithine, a specific irreversible inhibitor of ODC. The reaction showed an absolute requirement for pyridoxal phosphate, dithiothreitol and Mg++. The enzyme half life was about 10 hrs., showed maximum activity at pH 7.9 and a Km for arginine of 5 mM. ADC activity was stimulated by fetal-calf-serum and inhibited by spermine, probably through a negative feed-back regulation on the levels of the enzyme. ODC activity was not detected. These results confirm our previous reports on the capability of T. cruzi, RA strain epimastigotes to synthesize putrescine from arginine via agmatine by ADC and point out differences on polyamine metabolism between the parasite and the mammalian host cell.  相似文献   

15.
The cytosolic flavin enzyme from Trypanosoma cruzi was isolated by a modification of the previously reported method (T. Kuwahara, R. A. White, Jr., and M. Agosin (1985) Arch. Biochem. Biophys. 239, 18-28). In the present study, rabbits were inoculated with the purified enzyme and antibodies were purified from the sera. Ouchterlony double-diffusion analysis indicated that the antibodies reacted specifically with the flavoenzyme and not with other T. cruzi proteins. At the equivalence point, 1 ml of antibody neutralized about 4 nmol of enzyme. The IgG fraction had a small inhibitory effect on the catalytic activity of the enzyme as measured by cytochrome c reduction but only at IgG concentrations well above the equivalence point. Immunotitration of the enzyme in T. cruzi cultures showed that the enzyme corresponds to about 1% of the total protein during the logarithmic phase of growth, but this value decreases to about 0.6% during the stationary phase. Among various trypanosomatids tested, T. cruzi had the highest enzyme concentration; whereas, in other species it ranged from 0.25 to 2.4 micrograms/mg protein. These marked differences suggest that the antibody may be suitable for taxonomic purposes. The presence of the enzyme in amastigotes maintained in tissue culture cells was demonstrated by indirect immunofluorescence. The enzyme was found localized in the periphery of the cell, just beneath the subpellicular microtubules. However, distribution of the enzyme in epimastigotes was more diffuse. As immunofluorescence could be detected only in amastigotes and not in the tissue culture cells, it is suggested that the antibody may be suitable for histopathological diagnosis of Chagas' disease.  相似文献   

16.
This paper describes the design, synthesis and evaluation of a series of 2,4-diaminoquinazolines as inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were designed by a generating virtual library of compounds and docking them into the enzyme active site. Following their synthesis, they were found to be potent and selective inhibitors of leishmanial dihydrofolate reductase. The compounds were also found to have potent activity against Trypanosoma brucei rhodesiense, a causative organism of African trypanosomiasis and also against Trypanosoma cruzi, the causative organism of Chagas disease. There was significantly lower activity against Leishmania donovani, one of the causative organisms of leishmaniasis.  相似文献   

17.
Trypanothione reductase (TR), a flavoprotein oxidoreductase present in trypanosomatids but absent in human cells, is regarded as a potential target for the chemotherapy of several tropical parasitic diseases caused by trypanosomes and leishmanias. We investigated the possibility of modulating intracellular TR levels in Trypanosoma cruzi by generating transgenic lines that extrachromosomally overexpress either sense or antisense TR mRNA. Cells overexpressing the sense construct showed a 4-10-fold increase in levels of TR mRNA, protein and enzyme activity. In contrast, recombinant T.cruzi harbouring the antisense construct showed no significant difference in TR protein or catalytic activity when compared with control cells. Although increased levels of TR mRNA were detected in some of the antisense cells neither upregulation nor amplification of the endogenous trypanothione reductase gene (tryA) was observed. Instead, a proportion of plasmid molecules was found rearranged and, as a result, contained the tryA sequence in the sense orientation. Plasmid rescue experiments and sequence analysis of rearranged plasmids revealed that this specific gene inversion event was associated with the deletion of small regions of flanking DNA.  相似文献   

18.
The phosphorylation in vivo and in vitro of the arginine-ornithine and the lysine-arginine-ornithine (LAO) periplasmic transport proteins of Escherichia coli K-12 was previously reported (Celis, R. T. F. (1984) Eur. J. Biochem. 145, 403-411). The phosphorylative reaction required ATP (as a direct energy donor), Mg2+, and a kinase that can be released by osmotic shock treatment of the cells. The enzyme was purified to electrophoretic homogeneity. The enzyme exhibited an ATPase activity and a kinase activity. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gave an apparent molecular weight of 43,000 for the enzyme. The native protein showed the same molecular weight, suggesting that the protein is a monomer. The protein showed an apparent isoelectric point of 4.8 on isoelectric focusing. The two enzymatic reactions required a divalent cation and the apparent Km value for Mg2+ for the kinase activity was 0.5 mM. Mn2+ and Co2+ served as well as Mg2+, whereas Zn2+ and Ca2+ did not support activity. The ATPase activity of the enzyme yielded an apparent Km value for ATP of 50 microM. A similar value, Km of 100 microM, was calculated for the kinase activity with different concentrations of ATP. The enzyme showed a pH optimum of 7.3.  相似文献   

19.
Dihydroorotate dehydrogenase (DHOD) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and is essential in Trypanosoma cruzi, the parasitic protist causing Chagas' disease. T. cruzi and human DHOD have different biochemical properties, including the electron acceptor capacities and cellular localization, suggesting that T. cruzi DHOD may be a potential chemotherapeutic target against Chagas' disease. Here, we report nucleotide sequence polymorphisms of T. cruzi DHOD genes and the kinetic properties of the recombinant enzymes. T. cruzi Tulahuen strain possesses three DHODgenes: DHOD1 and DHOD2, involved in the pyrimidine biosynthetic (pyr) gene cluster on an 800 and a 1000 kb chromosomal DNA, respectively, and DHOD3, located on an 800 kb DNA. The open reading frames of all three DHOD genes are comprised of 942 bp, and encode proteins of 314 amino acids. The three DHOD genes differ by 26 nucleotides, resulting in replacement of 8 amino acid residues. In contrast, all residues critical for constituting the active site are conserved among the three proteins. Recombinant T. cruzi DHOD1 and DHOD2 expressed in E. coli possess similar enzymatic properties, including optimal pH, optimal temperature, Vmax, and Km for dihydroorotate and fumarate. In contrast, DHOD3 had a higher Vmax and Km for both substrates. Orotate competitively inhibited all three DHOD enzymes to a comparable level. These results suggest that, despite their genetic variations, kinetic properties of the three T. cruziDHODs are conserved. Our findings facilitate further exploitation of T. cruzi DHOD inhibitors, as chemotherapeutic agents against Chagas' disease.  相似文献   

20.
Clyne T  Kinch LN  Phillips MA 《Biochemistry》2002,41(44):13207-13216
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that is processed from a single polypeptide into two subunits creating the cofactor. In the human enzyme, both the proenzyme processing reaction and enzyme activity are stimulated by the polyamine putrescine. The processing reaction of Trypanosoma cruzi AdoMetDC was studied in an in vitro translation system. The enzyme was fully processed in the absence of putrescine, and the rate of this reaction was not stimulated by addition of the polyamine. Residues in the putrescine binding site of the human enzyme were evaluated for their role in processing of the T. cruzi enzyme. The E15A, I80K/S178E, D174A, and E256A mutant T. cruzi enzymes were fully processed. In contrast, mutation of R13 to Leu (the equivalent residue in the human enzyme) abolished processing of the T. cruzi enzyme, demonstrating that Arg at position 13 is a major determinant for proenzyme processing in the parasite enzyme. This amino acid change is a key structural difference that is likely to be a factor in the finding that putrescine has no role in processing of the T. cruzi enzyme. In contrast, the activity of T. cruzi AdoMetDC is stimulated by putrescine. Equilibrium sedimentation experiments demonstrated that putrescine does not alter the oligomeric state of the enzyme. The putrescine binding constant for binding to the T. cruzi enzyme (K(d) = 150 microM) was measured by a fluorescence assay and by ultrafiltration with a radiolabeled ligand. The mutant T. cruzi enzyme D174V no longer binds putrescine, and is not activated by the diamine. In contrast, mutation of E15, S178, E256, and I80 had no effect on putrescine binding. The k(cat)/K(m) values for E15A and E256A mutants were stimulated by putrescine to a smaller extent than the wild-type enzyme (2- and 4-fold vs 11-fold, respectively). These data suggest that the putrescine binding site on the T. cruzi enzyme contains only limited elements (D174) in common with the human enzyme and that the diamine plays different roles in the function of the mammalian and parasite enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号