首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The parvovirus genome is a linear, single-stranded DNA molecule with double-stranded hairpin termini. The 3' terminus can serve in vitro as a self-primer for the synthesis of a double-stranded viral DNA intermediate. We have sequenced the nucleotides in the 3' terminus and propose a model for the secondary structure of the terminus and the in vitro origin of replication for the complementary viral DNA strand.  相似文献   

2.
Detergent-disrupted virions of Moloney murine leukemia virus synthesize a 9 kbp double-stranded infectious DNA. It contains mainly full-length, single-stranded DNA, and its infectivity and size are insensitive to digestion by the single-strand-specific S1 nuclease. Analysis of fragmentation of the DNA using restriction endonucleases has shown that it is indistinguishable from the linear double-stranded DNA synthesized in infected cells. On the basis of the positions of the cleavage sites for a number of enzymes, the 9 kbp DNA has a 575 base direct terminal repetition. It is longer than the viral RNA at both ends, evidently due to repetitive copying of segments of the RNA. Virions also synthesize an 8.4 kbp double-stranded circular DNA that lacks one copy of the terminal repetition, as well as viral DNA longer than 9 kbp. The enzymatic machinery in the virions of retroviruses therefore appears to be responsible for all the steps involved in making fully double-stranded linear and one form of circular DNA.  相似文献   

3.
Retroviral integration requires cis-acting sequences at the termini of linear double-stranded viral DNA and a product of the retroviral pol gene, the integrase protein (IN). IN is required and sufficient for generation of recessed 3' termini of the viral DNA (the first step in proviral integration) and for integration of the recessed DNA species in vitro. Human immunodeficiency virus type 1 (HIV-1) IN, expressed in Escherichia coli, was purified to near homogeneity. The substrate sequence requirements for specific cleavage and integration of retroviral DNA were studied in a physical assay, using purified IN and short duplex oligonucleotides that correspond to the termini of HIV DNA. A few point mutations around the IN cleavage site substantially reduced cleavage; most other mutations did not have a drastic effect, suggesting that the sequence requirements are limited. The terminal 15 bp of the retroviral DNA were demonstrated to be sufficient for recognition by IN. Efficient specific cutting of the retroviral DNA by IN required that the cleavage site, the phosphodiester bond at the 3' side of a conserved CA-3' dinucleotide, be located two nucleotides away from the end of the viral DNA; however, low-efficiency cutting was observed when the cleavage site was located one, three, four, or five nucleotides away from the terminus of the double-stranded viral DNA. Increased cleavage by IN was detected when the nucleotides 3' of the CA-3' dinucleotide were present as single-stranded DNA. IN was found to have a strong preference for promoting integration into double-stranded rather than single-stranded DNA.  相似文献   

4.
5.
We described product analysis of DNA synthesized in chloroplast lysate from liverwort Marchantia polymorpha L. cell suspension cultures. Characteristics of in vitro DNA synthesis by chloroplast lysate using bacteriophage ?X174 single-stranded DNA were very similar to those in the case of double-stranded calf thymus DNA reported previously. Autoradiographic analysis clearly showed the incorporation of radioactive [α-32P]-dCTP into DNA molecules associated with bacteriophage ?X174 single-stranded template DNA, indicating conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III, double-stranded linear molecule). Experiments on the fate of [32P]-labeled single-stranded DNA also showed a clear conversion of the single-stranded DNA to double-stranded DNA. Furthermore, patterns of sucrose density gradient centrifugations (neutral and alkaline) showed the production of two major components in in vitro DNA synthesis by chloroplast lysate. This also indicated conversion of bacteriophage ?X174 single-stranded DNA to double-stranded DNA (RF III form). Our results suggest that the mechanism of chloroplast DNA replication could be the mode of strand-displacement DNA synthesis as seen in animal mitochondrial DNA synthesis.  相似文献   

6.
This paper concerns the properties of herpes simplex virus 1 DNA replicating in HEp-2 and human embryonic lung cells. The results were as follows. (i) Only a small fraction of input viral DNA entered the replicative pool. The bulk of the input viral DNA cosedimented with marker viral DNA and did not appear to be degraded or dissociated into L and S components. (ii) Nascent DNA sedimented faster and banded at a higher density than that of mature viral DNA extracted from virions. Pulse-chase experiments indicated that nascent DNA acquires the sedimentation rate and buoyant density of viral DNA within 30 to 40 min after its synthesis. (iii) Electron microscopic studies indicated that the DNA extracted from cells replicating viral DNA and banding at the density of viral DNA contained: (a) linear, full-size molecules with internal gaps and single-stranded regions at termini; (b) molecules with lariats, consisting of a linear segment up to 2x the size of mature DNA and a ring ranging from 0.5 x 10(6) to 100 x 10(6) in molecular weight, showing continuous and discontinuous forks; (c) circular, double-stranded molecules, both full-size and multiples of 18 x 10(6) in molecular weight, but without forks or loops; (d) molecules showing "eye" and "D" loops at or near one end of the DNA; (e) large, tangled masses of DNA, similar to those observed for T4 and pseudorabies virus replicating DNAs, containing loops and continuous and discontinuous forks. The electron micrographs are consistent with the hypothesis that the single-stranded ends on the DNA anneal to form a hairpin, that the DNA synthesis is initiated at or near that end and proceeds bidirectionally to form a lariat, and that resulting progeny derived by semiconservative replication are "head-to-head" and "tail-to-tail" dimers.  相似文献   

7.
Replication of the single-stranded DNA parvovirus H-1 involves the synthesis of a double-stranded DNA replicative form (RF). In this study, the metabolism of RF DNA was examined in parasynchronous hamster embryo cells. The initiation of RF DNA replication was found to occur late in S phase, as was the synthesis of the DNA upon which subsequent viral hemagglutinin synthesis is dependent. Evidence is presented which indicates that initiation of RF replication requires proteins synthesized in late S phase, but that concomittant protein synthesis is not required for the continuation of RF replication. The data also suggest a requirement for viral protein(s) for progeny strand synthesis. Incorporation of 5-bromo-2'-deoxyuridine (BUdR) into viral DNA resulted in an "all-or-none" inhibition of viral hemagglutinin and viral antigen synthesis. BUdR inactivation of viral protein function was used to explore the time of synthesis of viral DNA serving as template for viral RNA synthesis and the effect of viral protein on RF replication and progeny strand synthesis. Results of this study suggest that parental RF DNA is synthesized shortly after infection, and that viral mRNA is transcribed from only a few copies of the viral genome in each cell. They also support the conclusion that viral protein is inhibitory to RF DNA replication. Density labeling of RF DNA with BUdR, allowing separation of viral strand DNA (V) from viral complementary strand (C), provided additional data in support of the above findings.  相似文献   

8.
The DNA cleavage reaction of eukaryotic topoisomerase II produces nicked DNA along with linear nucleic acid products. Therefore, relationships between the enzyme's DNA nicking and double-stranded cleavage reactions were determined. This was accomplished by altering the pH at which assays were performed. At pH 5.0 Drosophila melanogaster topoisomerase II generated predominantly (greater than 90%) single-stranded breaks in duplex DNA. With increasing pH, less single-stranded and more double-stranded cleavage was observed, regardless of the buffer or the divalent cation employed. As has been shown for double-stranded DNA cleavage, topoisomerase II was covalently bound to nicked DNA products, and enzyme-mediated single-stranded cleavage was salt reversible. Moreover, sites of single-stranded DNA breaks were identical with those mapped for double-stranded breaks. To further characterize the enzyme's cleavage mechanism, electron microscopy studies were performed. These experiments revealed that separate polypeptide chains were complexed with both ends of linear DNA molecules generated during cleavage reactions. Finally, by use of a novel religation assay [Osheroff, N., & Zechiedrich, E. L. (1987) Biochemistry 26, 4303-4309], it was shown that nicked DNA is an obligatory kinetic intermediate in the topoisomerase II mediated reunion of double-stranded breaks. Under the conditions employed, the apparent first-order rate constant for the religation of the first break was approximately 6-fold faster than that for the religation of the second break. The above results indicate that topoisomerase II carries out double-stranded DNA cleavage/religation by making two sequential single-stranded breaks in the nucleic acid backbone, each of which is mediated by a separate subunit of the homodimeric enzyme.  相似文献   

9.
The bacteriophage T4-induced type II DNA topoisomerase has been shown previously to make a reversible double strand break in DNA double helices. In addition, this enzyme is shown here to bind tightly and to cleave single-stranded DNA molecules. The evidence that the single-stranded DNA cleavage activity is intrinsic to the topoisomerase includes: 1) protein linkage to the 5' ends of the newly cleaved DNA; 2) coelution of essentially homogeneous topoisomerase and the DNA cleavage activity; 3) inhibition of both single-stranded DNA cleavage and double-stranded DNA relaxation by oxolinic acid; and 4) inhibition of duplex DNA relaxation by single-stranded DNA. The major cleavage sites on phi X174 viral DNA substrates have been mapped, and several cleavage sites analyzed to determine the exact nucleotide position of cleavage. Major cleavage sites are found very near the base of predicted hairpin helices in the single-stranded DNA substrates, suggesting that DNA secondary structure recognition is important in the cleavage reaction. On the other hand, there are also many weaker cleavage sites with no obvious sequence requirements. Many of the properties of the single-stranded DNA cleavage reaction examined here differ from those of the oxolinic acid-dependent, double-stranded DNA cleavage reaction catalyzed by the same enzyme.  相似文献   

10.
Discontinuities in the DNA synthesized by an avian retrovirus   总被引:7,自引:6,他引:1       下载免费PDF全文
The unintegrated linear DNA synthesized in cells infected by Rous sarcoma virus is a predominantly double-stranded structure in which most of the minus-strand DNA, complementary to the viral RNA genome, is genome sized, whereas the plus-strand DNA is present as subgenomic fragments. We previously reported the application of benzoylated naphthoylated DEAE-cellulose chromatography to demonstrate that of the linear viral DNA species synthesized in quail embryo fibroblasts infected with Rous sarcoma virus greater than 99.5% contain single-stranded regions and these regions are predominantly composed of plus-strand DNA sequences (T. W. Hsu and J. M. Taylor, J. Virol. 44:47-53, 1982). We now present the following additional findings. (i) There were on the average 3.5 single-stranded regions per linear viral DNA, and these single-stranded regions could occur at many locations. (ii) With a probe to the long terminal repeat, we detected, in addition to a heterogeneous size distribution of subgenomic plus-strand DNA species, at least three prominent discrete size classes. Each of these discrete species had its own specific initiation site, but all had the same termination site. Such species were analogous to those reported by Kung et al. (J. Virol. 37: 127-138, 1981). (iii) These discrete size classes of plus-strand DNA were present not only on the major size class of linear DNA but also on a heterogeneous of slower-sedimenting species, which we have called immature linears. Our interpretation is that we have thus detected several additional sites for the initiation of plus-strand DNA. (iv) The 340-base plus-strand strong-stop DNA was only found associated with the immature linears. (v) From a size and hybridization comparison of these discrete size classes of plus-strand DNA with minus-strand DNA species, as synthesized in the endogenous reaction of melittin-disrupted virions, it was found that the putative additional initiation sites for plus-strand DNA synthesis corresponded to many of the pause sites in the synthesis of minus-strand DNA.  相似文献   

11.
We studied the synthesis of B-tropic murine leukemia viral DNA in vitro by detergent-disrupted virions. The reaction products (detected by the Southern transfer technique) included full-length, infectious, double-stranded DNA and several subgenomic fragments. Restriction endonuclease analysis and hybridization and specific probes revealed two classes of subgenomic fragments: some were derived from the right end of the genome, and some were derived from the left end. Most of the fragments harbored one long terminal repeat copy at their ends, suggesting that they were initiated correctly. S1 nuclease and restriction endonuclease treatments of these fragments indicated that a single-stranded gap was present near the first initiation site of plus strong-stop DNA. The treatments also suggested the presence of a second initiation site flanked by a single-stranded gap 0.9 kilobase pairs from the right end of the genome. Our data clearly show that plus-strand DNA is synthesized at both ends of the genome, by using plus strong stop as the first initiation site and additional initiation sites.  相似文献   

12.
13.
Lack of repair of ultraviolet light damage in Mycoplasma gallisepticum   总被引:10,自引:0,他引:10  
Molecules with single-stranded tails (rolling circles) were isolated as replicating intermediates in G4 progeny single-stranded DNA synthesis. Lysates from infected cells harvested late in infection during single-stranded DNA synthesis were not deproteinised but analysed directly in caesium chloride and propidium diiodide gradients. The gradient fractionated them on the basis of tail length. If the lysates were first deproteinised however, the tailed replicative intermediates banded as a peak at a density just greater than that of replicative form II DNA (RFII) and did not spread down the gradient. The origin of synthesis of the viral strand tail was mapped by electron microscopy as 55 to 60% away from the single EcoRI cleavage site. Termination molecules finishing a round of viral strand DNA synthesis have been identified as molecules consisting of a closed single-stranded DNA circle attached by a very small region to the parent double-stranded DNA circle.  相似文献   

14.
Replication of bacteriophage phi 29 DNA initiates at either end of its linear double-stranded DNA molecule and proceeds by a strand-displacement mechanism. In the present paper we have used an in vitro phi 29 DNA replication system to analyse by electron microscopy the replicative intermediates produced at different reaction times. Two types of replicative intermediates were observed: type I (full-length double-stranded phi 29 DNA molecules with one or more single-stranded DNA branches) and type II (full-length phi 29 DNA molecules formed by a double-stranded DNA portion of variable length from one end plus a single-stranded DNA portion spanning to the other end). Thus, the types of replicative intermediates produced in vivo were also formed in the in vitro phi 29 DNA replication system. Analysis of type I intermediates indicated that initiation of DNA replication occurs preferentially at both ends of the same DNA template, in a non-simultaneous manner. Type II intermediates appeared as early as two minutes after the reaction started, well before unit-length single-stranded phi 29 DNA molecules were synthesized. In addition, replication of recombinant phi 29 DNA templates lacking terminal protein at one end did not produce type II intermediates and led to an accumulation of full-length single-stranded phi 29 DNA molecules. These two observations strongly suggest that type II intermediates appear when two growing DNA chains, running from opposite ends, merge.  相似文献   

15.
T Formosa  B M Alberts 《Cell》1986,47(5):793-806
To simulate a reaction that occurs in T4-infected cells, we have developed an in vitro DNA synthesis system that requires seven highly purified proteins encoded by this bacteriophage: the DNA polymerase "holoenzyme" (four proteins), gene 32 protein, dda DNA helicase, and uvsX protein - an enzyme that catalyzes homologous DNA pairing and is functionally homologous to the recA protein. In the reaction observed, the 3'OH end of one single-stranded DNA molecule primes DNA synthesis using a double-stranded DNA molecule of homologous sequence as the template. The uvsX protein continuously removes the new DNA chain from its template, so that DNA is synthesized by a conservative mechanism. This type of reaction, which requires the cooperation of recombination and replication enzymes, seems likely to be a general feature of DNA metabolism.  相似文献   

16.
The J protein of phi X174 is a small, highly basic protein and is a component of the phage capsid. We have investigated the role of J protein during single-stranded viral DNA synthesis and phage morphogenesis by using an in vitro system composed of purified viral and host components (Aoyama et al., Proc. Natl. Acad. Sci. U.S.A. 80:4195-4199, 1983). The characterization of the products made in the presence and absence of J protein shows that J protein is not required for viral DNA synthesis, but is required for the packaging of DNA into infectious phage. The ability of J protein to bind to double-stranded DNA as well as single-stranded DNA and other interactions with DNA suggest a model in which J protein binds to double-stranded, replicative form DNA and enters the phage prohead by remaining bound to viral DNA as it is encapsidated.  相似文献   

17.
The replication of porcine circovirus type 1 (PCV1) is thought to occur by rolling-circle replication (RCR), whereby the introduction of a single-strand break generates a free 3'-hydroxyl group serving as a primer for subsequent DNA synthesis. The covalently closed, single-stranded genome of PCV1 replicates via a double-stranded replicative intermediate, and the two virus-encoded replication-associated proteins Rep and Rep' have been demonstrated to be necessary for virus replication. However, although postulated to be involved in RCR-based virus replication, the mechanism of action of Rep and Rep' is as yet unknown. In this study, the ability of PCV1 Rep and Rep' to "nick" and "join" strand discontinuities within synthetic oligonucleotides corresponding to the origin of replication of PCV1 was investigated in vitro. Both proteins were demonstrated to be able to cleave the viral strand between nucleotides 7 and 8 within the conserved nonanucleotide motif (5'-TAGTATTAC-3') located at the apex of a putative stem-loop structure. In addition, the Rep and Rep' proteins of PCV1 were demonstrated to be capable of joining viral single-stranded DNA fragments, suggesting that these proteins also play roles in the termination of virus DNA replication. This joining activity was demonstrated to be strictly dependent on preceding substrate cleavage and the close proximity of origin fragments accomplished by base pairing in the stem-loop structure. The dual "nicking/joining" activities associated with PCV1 Rep and Rep' are pivotal events underlying the RCR-based replication of porcine circoviruses in mammalian cells.  相似文献   

18.
An extract prepared from Escherichia coli cells infected with phi chi 174 bacteriophage was capable of incorporating dTTP into phage-specific DNAs in vitro. The synthesized DNAs were associated with proteins and sedimented with S values of 20, 50, and 90 in a sucrose gradient sedimentation. DNA isolated from 20S material was open circular replicative form (RF), DNA in 50S material was replicative-form DNA with an extended single-stranded viral DNA that ranged up to one genome in length, and DNA in 90S material consisted of circular and linear single-stranded viral DNA of full genome length and single-stranded viral DNA shorter than full genome length. Pulse and pulse-chase experiments indicated that 90S material derived from 50S material.  相似文献   

19.
A functional gene A product of phi X174 was found to be required at the stage of single-stranded DNA synthesis. A precursor complex that synthesizes single-stranded DNA (50S complex [Fujisawa and Hayashi, 1976]) was isolated from cells infected with wild-type or with temperature-sensitive gene A mutant phage. Proper cleavage of the single-stranded viral DNA did not occur in cells infected with the temperature-sensitive gene A mutant under restrictive conditions. This resulted in (i) accumulation of linear viral DNA molecules of 2 units in length in the 50S complex and (ii) cessation of elongation of viral-strand DNA after one complete cycle of single-stranded DNA synthesis.  相似文献   

20.
Adenovirus DNA replicates by displacement of one of the parental strands followed by duplication of the displaced parental single strand (complementary strand synthesis). Displacement synthesis has been performed in a reconstituted system composed of viral and cellular proteins, employing either the viral DNA-terminal protein complex as template or linearized plasmids containing the origin. Previously, evidence was obtained that in vivo complementary strand synthesis requires formation of a panhandle structure originating from hybridization of the inverted terminal repeats. To study the conditions for complementary strand synthesis in vitro, we have constructed an artificial panhandle molecule that contains a double-stranded inverted terminal repetition (ITR) region and a single-stranded loop derived from the left and right terminal XmaI fragments of Ad2. Such a molecule appeared to be an efficient template and could initiate by the same protein-priming mechanism as double-stranded DNA, employing the precursor terminal protein. The efficiency of both types of template was comparable. Like for replication of the duplex molecule initiation of panhandle replication was stimulated by nuclear factors I and III, proteins that bind to specific double-stranded regions of the ITR. The Ad DNA-binding protein is essential and the 39 kDa C-terminal domain of this protein that harbors the DNA-binding properties is sufficient for its function. These results support the hypothesis that panhandle formation is required for duplication of the displaced strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号