首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The question of hinging in myosin rod from rabbit skeletal muscle has been reexamined. Elastic light scattering and optical rotation have been used to measure the radius of gyration and fraction helix, respectively, as a function of temperature for myosin rod, light meromyosin (LMM), and long subfragment 2 (long S-2). The radius of gyration vs temperature profile of myosin rod is shifted with respect to the optical rotation melting curve by about -5 degrees C. Similar studies on both LMM and long S-2 show virtually superimposable profiles. To correlate changes in the secondary structure with the overall conformation, plots of radius of gyration vs fraction helix are presented for each myosin subfragment. Myosin rod exhibits a marked decrease in the radius of gyration from 43 nm to approximately 35 nm, while the fraction helix remains at nearly 100%. LMM and long S-2 did not show this behavior. Rather, a decrease in the radius of gyration of these fragments occurred with comparable changes in fraction helix. These results are interpreted in terms of hinging of the myosin rod within the LMM/S-2 junction.  相似文献   

2.
Elucidation of x-ray crystal structures for the S1 subfragment of myosin afforded atomic resolution of the nucleotide and actin binding sites of the enzyme. The structures have led to more detailed hypotheses regarding the mechanisms by which force generation is coupled to ATP hydrolysis. However, the three-dimensional structure of double-headed myosin consisting of two S1 subfragments has not yet been solved. Therefore, to investigate the overall shape and relative orientations of the two heads of myosin, we performed small-angle x-ray and neutron scattering measurements of heavy meromyosin containing all three light chains (LC(1-3)) in solution. The resulting small-angle scattering intensity profiles were best fit by models of the heavy meromyosin head-tail junction in which the angular separation between heads was less than 180 degrees. The S1 heads of the best fit models are not related by an axis of symmetry, and one of the two S1 heads is bent back along the rod. These results provide new information on the structure of the head-tail junction of myosin and indicate that combining scattering measurements with high resolution structural modeling is a feasible approach for investigating myosin head-head interactions in solution.  相似文献   

3.
The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the solution data.  相似文献   

4.
Molecular dynamics simulations have been performed on solvated G-actin bound to ADP and ATP, starting with the crystal structure of the actin-DNase 1 complex, including a Ca2+ or Mg2+ ion at the high-affinity divalent cation-binding site. Water molecules have been found to enter the nucleotide-binding site (phosphate vicinity) along two pathways, from the side where the nucleotide base is exposed to water, as well as from the opposite side. The water channels suggest a "back-door" mechanism for ATP hydrolysis in which the phosphate is released to a side opposite that of nucleotide binding and unbinding. The simulations also reveal a propensity of G-actin to alter its crystallographic structure toward the filamentous structure. Domain movement closes the nucleotide cleft, the movement being more pronounced for bound Mg2+. The conformational change is interpreted as a response of the system to missing water molecules in the crystal structure. The structures arising in the simulations, classified according to nucleotide cleft separation and radius of gyration of the protein, fall into two distinct clusters: a cluster of states that are similar to the G-actin crystal structure, and a cluster of states with small cleft separation and with the subdomain 3/4 loop 264-273 detached from the protein. The latter states resemble the putative filamentous structure of actin, in which the loop connects the two strands of the actin filament.  相似文献   

5.
Low angle X-ray scattering from heavy meromyosin (HMM) and from single-headed heavy meromyosin (sHMM) have been examined to determine if the heads of myosin change shape when cleaved from the rod to form subfragment 1 (S1). The scattering intensities of intact HMM and sHMM were compared with those of their chymotryptic digestion products, S1 and subfragment 2 (S2). As the data with HMM were complicated by scattering between the two heads, the more extensive analysis was done with sHMM. Pseudo-Guinier plots of intact and digested sHMM, over the angular range used previously for S1, were linear and showed a difference in apparent radius of gyration (Rg) of only 0.07 +/- 0.04 nm. The absolute apparent Rg value of sHMM was 3.2 +/- 0.2 nm, which is comparable to the radius of gyration reported previously for S1 alone. A plot of the fractional differences in scattering intensities of intact and digested sHMM was flat to a reciprocal spacing of at least 1/3.5 nm-1. These results indicate that the head portions of sHMM and S1 have very similar structures at low resolution. Scattering curves for various models of sHMM and mixtures of S1 and S2 were calculated and the fractional difference plots of scattering intensities were made to determine how sensitive this type of analysis is to changes in the shape of the head. Changes in Rg of 0.1 nm or greater gave detectably non-flat difference plots. Thus, the X-ray scattering of sHMM (and HMM) demonstrated that differences in structure between the head of myosin and isolated S1 are likely to be small. Current controversies over myosin head structure are discussed in light of this result.  相似文献   

6.
Small-angle X-ray and neutron scattering data were used to study the solution structure of calmodulin complexed with a synthetic peptide corresponding to residues 577-603 of rabbit skeletal muscle myosin light chain kinase. The X-ray data indicate that, in the presence of Ca2+, the calmodulin-peptide complex has a structure that is considerably more compact than uncomplexed calmodulin. The radius of gyration, Rg, for the complex is approximately 20% smaller than that of uncomplexed Ca2+.calmodulin (16 vs 21 A), and the maximum dimension, dmax, for the complex is also about 20% smaller (49 vs 67 A). The peptide-induced conformational rearrangement of calmodulin is [Ca2+] dependent. The length distribution function for the complex is more symmetric than that for uncomplexed Ca2+.calmodulin, indicating that more of the mass is distributed toward the center of mass for the complex, compared with the dumbell-shaped Ca2+.calmodulin. The solvent contrast dependence of Rg for neutron scattering indicates that the peptide is located more toward the center of the complex, while the calmodulin is located more peripherally, and that the centers of mass of the calmodulin and the peptide are not coincident. The scattering data support the hypothesis that the interconnecting helix region observed in the crystal structure for calmodulin is quite flexible in solution, allowing the two lobes of calmodulin to form close contacts on binding the peptide. This flexibility of the central helix may play a critical role in activating target enzymes such as myosin light chain kinase.  相似文献   

7.
Neutron scattering has been used to compare the structure of myosin S1 that is free in solution to that when it is bound to F-actin. To achieve this, deuterated actin was obtained from D. discoideum that had been fed deuterated E. coli. This deuterated actin was rendered “invisible” to neutrons when dissolved in 94% D2O. The neutron scattering patterns obtained from S1 bound to deuterated actin were identical to those of free S1 except for oscillations due to S1's bound to the same actin filament. At low S1 to actin stoichiometrics, these oscillations diminish and the patterns become indistinguishable. The apparent radius of gyration of S1 bound to actin is identical to that of free S1 when the stoichiometry is low. Thus, no changes in the structure of S1 were observed to a resolution of 2.5 nm. Computer modelling studies were used to evaluate the compatibility of models for the mechanism of force generation with the neutron data. These studies show that for powerstrokes greater than 5.0 nm, the data are consistent with more than 80% of the crossbridge maintaining a rigid conformation during force generation.  相似文献   

8.
Small-angle X-ray and neutron scattering have been used to characterize the solution structure of rabbit skeletal phosphorylase kinase. The radius of gyration of the unactivated holoenzyme determined from neutron scattering is 94 A, and its maximum dimension is approximately 275-295 A. A planar model has been constructed that is in general agreement with the dimensions of the transmission electron microscope images of negatively stained phosphorylase kinase and that gives values for the radius of gyration, maximum linear dimension, and a pair distribution function for the structure that are consistent with the scattering data.  相似文献   

9.
Two forms of alpha 1 acid glycoprotein (orosomucoid) have been studied using small-angle neutron and X-ray scattering techniques; in one form all the five glycan chains were biantennary, while in the other they were either triantennary or tetraantennary. The radius of gyration RG was found to be sensitive to salt for the biantennary form, but to be unchanged up to an ionic strength of 3 M for the triantennary and tetraantennary forms. Conformational heterogeneity is thus associated with carbohydrate heterogeneity. Hydrodynamic frictional coefficients confirm these findings. Simple models of alpha 1 acid glycoprotein were developed to account for the RG and values. These show that the compact conformation is slightly more elongated than a globular protein and that the expanded biantennary conformation has a most extended carbohydrate structure. Up to half of the surface of the compact shape can be covered by carbohydrate residues.  相似文献   

10.
Excess small angle X-ray scattering in solvents of differing electron density has been calculated from the crystal structures obtained for rubredoxin, trypsin inhibitor, myogen, ferricytochrome c2, ribonuclease S, lysozyme, nuclease, myoglobin, α-chymotrypsin, elastase, subtilisin, carboxypeptidase A, thermolysin, methemoglobin, deoxyhemoglobin, and a single polypeptide chain of M4 lactate dehydrogenase. The scattering curves for each protein can be reproduced by the sum of three curves, with the weighting of the three curves depending on the electron density of the solvent. The radius of gyration obtained from the small angle X-ray scattering by globular proteins in aqueous solution will usually exceed the values defined by the shape of the macromolecule. Deviations for certain of the proteins cited are calculated to be as large as 6%. These deviations arise from the tendency for the amino acid residues with low electron density to be situated closer to the center of the protein than the amino acid residues of high electron density. An upper limit of 19% is obtained for the discrepancy between the radius of gyration defined by the shape of a spherical globular protein of typical amino acid composition and the apparent radius of gyration measured for that protein in water by small angle X-ray scattering.  相似文献   

11.
Stone DB  Hjelm RP  Mendelson RA 《Biochemistry》1999,38(16):4938-4947
The dimeric structure of the members of the kinesin family of motor proteins determines the individual characteristics of their microtubule-based motility. Crystal structures for ncd and kinesin dimers, which move in opposite directions on microtubules, show possible states of these dimers with ADP bound but give no information about these dimers in solution. Here, low-angle X-ray and neutron scattering were used to investigate their solution structures. Scattering profiles of Drosophila ncd 281-700 (NCD281) and human kinesin 1-420 (hKIN420) were compared with models made from the crystallographically determined structures of NCD281 and rat kinesin 1-379 (rKIN379). From the low-angle region it was found that the radius of gyration (Rg) of NCD281 is 3.60 +/- 0.075 nm, which is in agreement with the crystallography-based model. Scattering by longer ncd constructs (NCD250 and NCD224) is also well fit by the appropriate crystallography-based models. However, the measured Rg of hKIN420, 4.05 +/- 0.075 nm, is significantly smaller than that of the crystallography-based model. In addition, the overall scattering pattern of NCD281 is well fit by the model, but that of hKIN420 is poorly fit. Model calculations indicate that the orientation of the catalytic cores is different from that observed in the rKIN379 crystal structure. Like the crystal structure, the best-fitting models do not show 2-fold symmetry about the neck axis; however, their overall shape more resembles a mushroom than the "T"-like orientation of the catalytic cores found in the crystal structure. The center of mass separations of the catalytic cores in the best-fitting models are 0.7-1 nm smaller than in the crystal structure.  相似文献   

12.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of F-actin, as well as of the interaction of these complexes with F-actin. We show that in the absence of F-actin the formation of S1 x ADP x BeFx occurs much faster (3-4 min) than that of S1 x ADP x AlF4- (hours). The formation of these complexes in the presence of F-actin led to dissociation of S1 from F-actin, this process being monitored by a decrease in light scattering. The light scattering decrease of the acto-S1 complex occurred much faster after addition of BeFx (during 1 min) than after addition of AlF4- (more than 20 min). In both cases the light scattering of the acto-S1 complex decreased by 40-50%, but it remained much higher than that of F-actin measured in the absence of S1. The interaction of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes with F-actin was studied by the stopped-flow technique with high time resolution (no more than 0.6 sec after mixing of S1 with F-actin). We found that the binding of S1 x ADP x BeFx or S1 x ADP x AlF4- to F-actin is accompanied by a fast increase in light scattering, but it does not affect the fluorescence of a pyrene label specifically attached to F-actin. We conclude from these data that within this time range a "weak" binding of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes to F-actin occurs without the subsequent transition of the "weak" binding state to the "strong" binding state. Comparison of the light scattering kinetic curves shows that S1 x ADP x AlF4- binds to F-actin faster than S1 x ADP x BeFx does: the second-order rate constants for the "weak" binding to F-actin are (62.8 +/- 1.8) x 10(6) M-1 x sec-1 in the case of S1 x ADP x AlF4- and (22.6 +/- 0.4) x 10(6) M-1 x sec-1 in the case of S1 x ADP x BeFx. We conclude that the stable ternary complexes S1 x ADP x BeFx and S1 x ADP x AlF4- can be successfully used for kinetic studies of the "weak" binding of the myosin heads to F-actin.  相似文献   

13.
Structure of myosin subfragment 1 from low-angle X-ray scattering   总被引:5,自引:0,他引:5  
The X-ray scattering pattern produced by a solution of myosin subfragment 1 has been measured to a resolution (Bragg spacing) of 2 nm. We find that for subfragment 1 (S1) prepared by limited papain digestion in the presence of ethylenediaminetetraacetate the radius of gyration is 3.28 +/- 0.06 nm, the volume is 151 +/- 6 nm3, the surface area is 330 +/- 15 nm2, and the length of the maximum chord is 12.0 +/- 1.0 nm. The theoretical scattering patterns from several objects of uniform electron density have been calculated and compared with the observed scattering produced by S1. The recent three-dimensional electron micrograph reconstruction of S1-decorated actin by J. Seymour and E. O'Brien (private communication) generated the calculated pattern that best fit the observed scattering. This fit strongly suggests that this reconstruction resembles subfragment 1. The good correspondence between an S1 structure derived when S1 is attached to actin and a study of free S1 in solution strongly suggests that binding to actin does not grossly distort the shape of S1. This is consistent with the notion that S1 changes its orientation on actin, rather than its shape, in order to generate the contractile force in muscle.  相似文献   

14.
In the duodenum, pancreatic lipase (PL) develops its activity on triglycerides by binding to the bile-emulsified oil droplets in the presence of its protein cofactor pancreatic colipase (PC). The neutron crystal structure of a PC-PL-micelle complex (Hermoso, J., Pignol, D., Penel, S., Roth, M., Chapus, C., and Fontecilla-Camps, J. C. (1997) EMBO J. 16, 5531-5536) has suggested that the stabilization of the enzyme in its active conformation and its adsorption to the emulsified oil droplets are mediated by a preformed lipase-colipase-micelle complex. Here, we correlate the ability of different amphypathic compounds to activate PL, with their association with PC-PL in solution. The method of small angle neutron scattering with D(2)O/H(2)O contrast variation was used to characterize a solution containing PC-PL complex and taurodeoxycholate micelles. The resulting radius of gyration (56 A) and the match point of the solution indicate the formation of a ternary complex that is similar to the one observed in the neutron crystal structure. In addition, we show that either bile salts, lysophospholipids, or nonionic detergents that form micelles with radii of gyration ranging from 13 to 26 A are able to bind to the PC-PL complex, whereas smaller micelles or nonmicellar compounds are not. This further supports the notion of a micelle size-dependent affinity process for lipase activation in vivo.  相似文献   

15.
The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA.  相似文献   

16.
A static light scattering (SLS) study of bovine serum albumin (BSA) mixtures with two anionic graft copolymers of poly(sodium acrylate-co-sodium 2-acrylamido-2-methyl-1-propanesulphonate)-graft-poly(N,N-dimethylacrylamide), with a high composition in poly(N,N-dimethylacrylamide) (PDMAM) side chains, revealed the formation of oppositely charged complexes, at pH lower than 4.9, the isoelectric point of BSA. The core-corona nanoparticles formed at pH = 3.00 were characterized. Their molecular weight and radius of gyration were determined by SLS, while their hydrodynamic radius was determined by dynamic light scattering. Small angle neutron scattering measurements were used to determine the radius of the insoluble complexes, comprising the core of the particles. The values obtained indicated that their size and aggregation number of the nanoparticles were smaller when the content of the graft copolymers in neutral PDMAM side chains was higher. Such particles should be interesting drug delivery candidates, if the gastrointestinal tract was to be used.  相似文献   

17.
Structural properties of rabbit skeletal myosin head (S1) and the influence of the DTNB light chain (LC2) on the size and shape of myosin heads in solution were investigated by small angle x-ray scattering. The LC2 deficient myosin head, S1 (-LC2), and the S1 containing LC2 light chain, S1 (+LC2) were studied in parallel. The respective values of the radius of gyration were found to be (40.2 +/- 0.5) A and (46.7 +/- 1) A, while the maximum dimension was (190 +/- 15) A for both species. The large difference between the two Rg values suggest that LC2 is located close to one extremity of the myosin head, in agreement with most electron microscopy observations. All models derived from the x-ray scattering pattern of the native myosin head share a common overall morphology, showing two main regions, an asymmetric globular portion which tapers smoothly into a thinner domain of roughly equivalent length making an angle of approximately 60 degrees, with a contour length of approximately 210 A.  相似文献   

18.
Using small angle x-ray scattering from solutions of yeast phosphoglycerate kinase, we have measured the radius of gyration of the enzyme both in the presence and in the abscence of ligands. We find that the radius of gyration decreases by 1.09 +/- 0.34 A upon binding both substrates MgATP and 3-phosphoglycerate to form the ternary complex. Smaller decreases, at the limit of the precision of the measurement, were found for the separate binding of MgATP (0.30 +/- 0.50 A). Using computer modeling, it has been estimated that a substrate-induced cleft closure in phosphoglycerate kinase resulting from one lobe rotating 8-14 degrees relative to the other lobe lobe is consistent with this observed change in radius of gyration. We suggest, therefore, that the conformational change that results in the smaller radius of gyration for the ternary complex is a hinge motion of the two lobes which produces a closing of the cleft between the two lobes. The apparent similarity of the ligand-induced change in phosphoglycerate kinase to the cleft closure in hexokinase suggests that this kind of conformational change may prove to be a rather general kinase phenomenon (Bennett, W.S., and Steitz T.A. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4848-4852; Anderson, C.M., Zucker, F.H., and Steitz, T.A. (1979) Science 204, 375-380).  相似文献   

19.
Physical characteristics of ribosomal protein S4 from Escherichia coli   总被引:1,自引:0,他引:1  
A hydrodynamic study of protein S4 from Escherichia coli 30 S ribosomal subunits indicates that this protein is moderately asymmetric. A sedimentation coefficient of 1.69 S and a diffusion coefficient of 7.58 X 10(-7) cm2/s suggest that S4 has an axial ratio of about 5:1 using a prolate ellipsoidal model. This structure should give a radius of gyration of about 29-30 A from small-angle neutron or small-angle x-ray scattering studies. This study has utilized quasi-elastic light scattering as an analytical tool to obtain a diffusion coefficient as well as a method to monitor sample quality. Using quasi-elastic light scattering in this manner allows an assessment of problems associated with protein purity which may be responsible for the many disparate results reported for ribosomal proteins and especially protein S4.  相似文献   

20.
Structural changes of creatine kinase upon substrate binding.   总被引:2,自引:0,他引:2       下载免费PDF全文
Small-angle x-ray scattering was used to investigate structural changes upon binding of individual substrates or a transition state analog complex (TSAC; Mg-ADP, creatine, and KNO3) to creatine kinase (CK) isoenzymes (dimeric muscle-type (M)-CK and octameric mitochondrial (Mi)-CK) and monomeric arginine kinase (AK). Considerable changes in the shape and the size of the molecules occurred upon binding of Mg-nucleotide or TSAC. The radius of gyration of Mi-CK was reduced from 55.6 A (free enzyme) to 48.9 A (enzyme plus Mg-ATP) and to 48.2 A (enzyme plus TSAC). M-CK showed similar changes from 28.0 A (free enzyme) to 25.6 A (enzyme plus Mg-ATP) and to 25.5 A (enzyme plus TSAC). Creatine alone did not lead to significant changes in the radii of gyration, nor did free ATP or ADP. AK also showed a change of the radius of gyration from 21.5 A (free enzyme) to 19.7 A (enzyme plus Mg-ATP), whereas with arginine alone only a minor change could be observed. The primary change in structure as seen with monomeric AK seems to be a Mg-nucleotide-induced domain movement relative to each other, whereas the effect of substrate may be of local order only. In CK, however, additional movements have to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号