共查询到20条相似文献,搜索用时 15 毫秒
1.
Overweight and obesity have become worldwide health issues in most countries. Current strategies aimed to prevent or reduce overweight and obesity have mainly focused on the genes and molecular mechanisms that give the functional characteristics to different types of adipose tissue. The Browning phenomenon in adipocytes consists of phenotypic and metabolic changes within white adipose tissue (WAT) activated by thermogenic mechanisms similar to that occurring in brown adipose tissue (BAT); this phenomenon has assumed great relevance due to its therapeutic potential against overweight and obesity. In addition, the study of inflammation in the development of overweight and obesity has also been included as a relevant factor, such as the pro-inflammatory mechanisms promoted by M1-type macrophages in adipose tissue. Studies carried out in this area are mainly performed by using the 3T3-L1 pre-adipocyte cell line, testing different bioactive compound sources such as plants and foods; nevertheless, it is necessary to standardize protocols used in vitro as well to properly scale them to animal models and clinical tests in order to have a better understanding of the mechanisms involved in overweight and obesity. 相似文献
2.
3.
4.
TGFβ、Wnt、FGF和Hedgehog(Hh)等信号通路是参与胚胎发育的关键信号通路.从果蝇到人类,Hh信号通路广泛存在并高度保守,在多种器官的发育过程中发挥重要作用. 脂肪细胞发育的过程包括多潜能干细胞向前脂肪细胞定向和脂肪细胞终末分化两个阶段.近年来,Hh信号通路在脂肪细胞发育过程中的作用逐渐成为研究热点.越来越多的研究表明,Hh信号通路抑制脂肪细胞发育.本文将对Hh信号通路抑制脂肪细胞发育的作用以及其发挥作用的阶段进行综述,并分析将该信号通路作为靶点治疗肥胖症及相关疾病的可行性. 相似文献
5.
6.
Wang H Yan S Chai H Riha GM Li M Yao Q Chen C 《Biochemical and biophysical research communications》2006,346(3):860-865
Smooth muscle cells (SMCs) under shear stress may alter their gene expression patterns to adapt to a new hemodynamic environment. Their plasticity may play an important role in vascular development, healing, and remodeling as well as vascular lesion formation under abnormal environmental conditions. A mouse vascular SMC line (P53LMACO1) cultured under shear stress significantly increased the mRNA levels of endothelial cell markers including Platelet-endothelial cell adhesion molecule-1 (PECAM-1), von Willebrand factor (vWF), and VE-cadherin, while significantly decreasing the mRNA levels of SMC markers including alpha-smooth muscle actin (alpha-SMA), calponin-1, smooth muscle myosin heavy chain (SMMHC), and transgelin as compared to static control cells. Protein levels of PECAM-1 and vWF were significantly increased, while protein levels of alpha-SMA were substantially decreased in the shear stress-cultured cells. In addition, shear stress-cultured cells showed an enhanced capability to form capillary-like structures on Matrigel. Thus, shear stress may promote endothelial cell transdifferentiation from SMCs. 相似文献
7.
Yusuke Nakatsu Yasuka Matsunaga Takeshi Yamamotoya Koji Ueda Masa-ki Inoue Yu Mizuno Mikako Nakanishi Tomomi Sano Yosuke Yamawaki Akifumi Kushiyama Hideyuki Sakoda Midori Fujishiro Akihide Ryo Hiraku Ono Tohru Minamino Shin-Ichiro Takahashi Haruya Ohno Masayasu Yoneda Tomoichiro Asano 《Cell reports》2019,26(12):3221-3230.e3
8.
Summary Expiants of adrenal medullary tissue taken from newborn guinea pigs were grown in culture for up to two weeks. The explants exhibited sparse outgrowth of neurite-like processes, in contrast to adrenal medullae taken from young postnatal rats or adult guinea pigs that were (i) grown under identical conditions (Unsicker and Chamley 1977) or (ii) transplanted to the anterior chamber of the eye (Unsicker et al. 1981), respectively. Nerve growth factor (10–100 ng/ml, 2.5S NGF) did not enhance formation of processes. However, electron-microscopic investigations revealed the presence of numerous processes within the explants, which extended from chromaffin cells and were characterized by longitudinally oriented cytoskeletal structures, various populations of clear and dense-cored vesicles, varicosities and growth cones. Chromaffin cell bodies largely resembled their in situ-counterparts, but had fewer and smaller storage vesicles than controls.The results are discussed in light of recent findings regarding the potency of NGF and NGF-like growth factors to induce neuronal transdifferentiation of adrenal chromaffin cells.Supported by grants from the Deutsche Forschungsgemeinschaft (SFB 103 and Un 34/6) 相似文献
9.
10.
肥胖已被证实是胰岛素抵抗、2 型糖尿病、高血压、高脂血症及冠状动脉粥样硬化性心脏病等代谢性疾病发生的重要诱因.肥胖的发生主要是由于体内脂肪细胞的异常分化和增殖,最终导致脂肪细胞异常增多及细胞内脂质过度沉积产生的.脂肪细胞的增殖分化受到多种因素的调控,其中脂肪细胞因子作为脂肪组织分泌的肽类激素,也在脂肪细胞的发育分化过程中起重要的反馈调节作用.大多数肥胖患者体内存在脂肪细胞因子分泌异常及其相应的功能紊乱.本文将对几种主要的脂肪细胞因子在脂肪细胞发育分化中的作用及最新研究进展进行简要综述及讨论. 相似文献
11.
Mohammad Badrul Anam Arif Istiaq Ryusho Kariya Mikiko Kudo Shah Adil Ishtiyaq Ahmad Naofumi Ito Seiji Okada Kunimasa Ohta 《Biochemistry and Biophysics Reports》2021
Previously we reported that, lactic acid bacteria (LAB) can induce human dermal fibroblast (HDF) cells to form multipotent cell clusters which are able to transdifferentiate into three germ layer derived cell lineages. Later on, we confirmed that ribosome is responsible for the LAB-induced transdifferentiation and ribosomes from diverse organisms can mimic the LAB effect on HDF cells. In our present study we have shown that, upon incorporation of ribosomes, non-small cell lung cancer cell line A549 and gastric tubular adenocarcinoma cell line H-111-TC are transformed into spheroid like morphology those can be transdifferentiated into adipocytes and osteoblast. Our qPCR analysis has revealed that, during the formation of ribosome induced cancer cell spheroids, the expression of the cancer cell associated markers and cell cycle/proliferation markers were altered at different time point. Through our investigation, here we report a novel and a non-invasive approach for cancer cell reprogramming by incorporating ribosomes. 相似文献
12.
13.
Sirt1(Sirtuin type 1)是依赖于烟酰胺腺嘌呤二核苷酸(NAD+)的组蛋白脱乙酰酶, 为Sirtuins家族成员之一, 与细胞增殖、分化、衰老、凋亡和代谢密切相关。目前, 有关Sirt1与衰老和代谢的论文已在Science、Nature、Cell等杂志上连续刊出。其中, Sirt1通过抑制 PPARγ促进白色脂肪细胞中脂肪动员, 并且通过下调肌细胞标志基因表达来抑制成肌细胞分化。提示Sirt1不仅是一个重要的与机体“长寿”有关的因子, 而且可能在动物脂肪沉积和肌肉发育中起着关键的调控作用。 相似文献
14.
Xiaomin Song Bolun Li Haoran Wang Xuan Zou Ran Gao Wei Zhang Ting Shu Hongmei Zhao Bin Liu Jing Wang 《生物化学与生物物理学报:疾病的分子基础》2019,1865(2):350-359
Many epidemiological studies suggested a correlation between obesity and asthma. However, little is known about the molecular details explaining this correlation. Here, we show that asthma decreased body weight of asthmatic male mice fed with high fat diet via increasing energy expenditure and insulin sensitivity. The increase of energy expenditure was mainly due to upregulation of pAMPK and Sirt1. The activation of AMPK/Sirt1/PGC1α signaling promoted the expression of the thermogenic genes like ucp1, PRDM16, cidea, Elovl3, PPARα, which occurred in brown adipocyte tissue and subcutaneous white adipose tissue. Besides, by activating IL33/ILC2/AAMac pathway in subcutaneous white adipose tissue, asthma promoted subcutaneous white adipose tissue into beige fat. In addition, insulin sensitivity was improved in the asthmatic male mice by decreasing the expression of G6Pase in the liver, which was recapitulated in HepG2. In human, we found that Body Mass Index (BMI) and waist circumference were significantly lower in males suffering asthma compared with the control in the National Health and Nutrition Examination Survey (NHANES) cohort. These data together suggest asthma in males decreases obesity by improving the metabolism function of brown and subcutaneous adipose tissue, and decreasing insulin resistant in the liver. 相似文献
15.
Mikihisa Takano Taishi HoriuchiYoshihiro Sasaki Yuki KatoJunya Nagai Ryoko Yumoto 《Life sciences》2013
Aims
The purpose of this study was to clarify the expression and function of peptide transporter 2 (PEPT2) in primary cultured alveolar type II epithelial cells and in transdifferentiated type I-like cells.Main methods
Real-time PCR analysis, uptake study of [3H]Gly-Sar, and immunostaining were performed in alveolar epithelial cells.Key findings
The expression of PEPT2 mRNA in type II cells isolated from rat lungs was highest at day 0, and decreased rapidly during culture of the cells. In accordance with this change, PEPT2 activity estimated as cefadroxil-sensitive [3H]Gly-Sar uptake also decreased along with transdifferentiation. The expression of PEPT2 protein in type II cells was confirmed by immunostaining and Western blot analysis. The uptake of [3H]Gly-Sar in type II cells was time- and pH-dependent. In contrast, minimal time-dependence and no pH-dependence of [3H]Gly-Sar uptake were observed in type I-like cells. The maximal [3H]Gly-Sar uptake was observed at pH 6.0, and the uptake decreased at higher pHs in type II cells. The uptake of [3H]Gly-Sar in type II cells was inhibited by cefadroxil in a concentration-dependent manner, the IC50 value being 4.3 μM. On the other hand, no significant inhibition by cefadroxil was observed in type I-like cells. In addition, [3H]Gly-Sar uptake in type II cells was saturable, the Km value being 72.0 μM.Significance
PEPT2 is functionally expressed in alveolar type II epithelial cells, but the expression decreases along with transdifferentiation, and PEPT2 would be almost completely lost in type I cells. 相似文献16.
17.
为研究过氧化物酶体增殖物激活受体γ辅激活因子1β(PGC-1β)与SREBP-1c在猪前体脂肪细胞分化过程中的表达规律及其相互作用,分析二者功能上的联系,采用Western 印迹及细胞免疫荧光技术检测PGC-1β与SREBP-1c在猪脂肪细胞分化过程中的表达,shRNA干扰和免疫共沉淀技术分别探讨了PGC-1β对SREBP-1c的调节作用及2种蛋白质在体内的结合活性.结果显示,PGC-1β与SREBP-1c 蛋白的表达均随猪脂肪细胞分化逐渐增加,且在分化细胞的核和胞浆中均有分布. 干扰PGC-1β显著下调了SREBP-1c和脂肪细胞分化标记基因C/EBPα的表达(P<0.05),同时降低了细胞内甘油三酯的积累.免疫共沉淀证明,PGC-1β与SREBP-1c蛋白在猪脂肪细胞分化过程中存在结合作用. 以上结果表明,PGC-1β能够促进猪脂肪细胞分化并对SREBP-1c有调节和结合作用,推测二者的结合可能与其对脂肪细胞的分化调节机制相关,将对PGC-1β调控脂肪细胞分化的功能和机理研究提供新途径. 相似文献
18.
Madalina Duta-Mare Vinay Sachdev Christina Leopold Dagmar Kolb Nemanja Vujic Melanie Korbelius Dina C. Hofer Wenmin Xia Katharina Huber Martina Auer Benjamin Gottschalk Christoph Magnes Wolfgang F. Graier Andreas Prokesch Branislav Radovic Juliane G. Bogner-Strauss Dagmar Kratky 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(4):467-478
Lysosomal acid lipase (LAL) is the only known enzyme, which hydrolyzes cholesteryl esters and triacylglycerols in lysosomes of multiple cells and tissues. Here, we explored the role of LAL in brown adipose tissue (BAT). LAL-deficient (Lal?/?) mice exhibit markedly reduced UCP1 expression in BAT, modified BAT morphology with accumulation of lysosomes, and mitochondrial dysfunction, consequently leading to regular hypothermic events in mice kept at room temperature. Cold exposure resulted in reduced lipid uptake into BAT, thereby aggravating dyslipidemia and causing life threatening hypothermia in Lal?/? mice. Linking LAL as a potential regulator of lipoprotein lipase activity, we found Angptl4 mRNA expression upregulated in BAT. Our data demonstrate that LAL is critical for shuttling fatty acids derived from circulating lipoproteins to BAT during cold exposure. We conclude that inhibited lysosomal lipid hydrolysis in BAT leads to impaired thermogenesis in Lal?/? mice. 相似文献
19.
在研究胰岛素(Ins)、地塞米松(Dex)和甲基异丁基黄嘌呤(Mix)对脂肪细胞分化过程中PAI-1基因表达的影响基础上,为进一步探讨Ins、Dex调控PAI-1基因转录表达的调控机制,应用DNA重组技术,构建含萤光素酶(luciferase)报告基因和PAI-1启动子不同长度片段的嵌合质粒,转染3T3-L1前脂肪细胞并测定报告基因荧光素酶的活性.结果表明,小鼠PAI-1基因起动子-690至-850碱基序列之间有一个Dex的正调控元件.用计算机软件进行分析发现:Dex顺式元件位于PAI-1启动子的-750至-770碱基序列.其组成为:5′ GGTAACCTCTGTTCTCAT 3′.同时还发现在PAI-1启动子的-720至-740碱基序列中,存在一个C/EBPs的结合元件5′CCAAT3′并用凝胶电泳迁移实验对这些元件进行了鉴定.表明Dex正是通过激活转录因子(糖皮质激素受体,GR)和C/EBPα一起与各自的顺式元件结合来促进PAI-1基因的表达. 相似文献
20.
《Tissue & cell》2016,48(5):452-460
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT. 相似文献