首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of exogenous glycinebetaine (GB, 2–50 mM) on growth, photosynthetic gas exchange, PSII photochemistry, and the activities of key enzymes involved in CO2 fixation in maize plants were investigated. Growth, CO2 assimilation rate, and stomatal conductance increased at low GB concentrations (2–20 mM) but decreased significantly at high GB concentrations (30–50 mM). Leaf relative water content and water potential remained unchanged at low GB concentrations but decreased at high GB concentrations. The maximal efficiency of PSII photochemistry was unchanged either at low or high GB concentrations. The actual PSII efficiency ( Φ PSII) and photochemical quenching (qP) increased at low GB concentrations but decreased at high GB concentrations. At low GB concentrations, there were no significant changes in the efficiency of excitation energy capture by open PSII reaction centres (Fv′/Fm′) and non‐photochemical quenching (qN). At high GB concentrations, Fv′/Fm′ decreased while qN increased significantly. There were no changes in the activities of phosphoenolpyruvate carboxylase, pyruvate phosphate dikinase, and ribulose‐1,5‐bisphosphate carboxylase in control and GB‐fed plants. However, there was a linear correlation between CO2 assimilation rate and stomatal conductance in control and GB‐fed plants. Moreover, there were no significant differences in O2 evolution rate between control and GB fed‐plants under saturated CO2 conditions. The results suggest that exogenous GB application at certain concentrations can enhance CO2 assimilation rate, which can be explained by an increased stomatal conductance.  相似文献   

2.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

3.
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress.  相似文献   

4.
The impact of moderate water deficit on the photosynthetic apparatus of three Phaseolus vulgaris L. cultivars, Plovdiv 10 (P10), Dobrudjanski Ran (DR) and Prelom (Prel), was investigated. Water shortage had less impact on leaf hydration, RWC (predawn and midday) and predawn water potential in Prel. RWC and Ψp were more reduced in P10, while there was no osmotic adjustment in any cultivar. Although drought drastically reduced stomatal opening in P10 and DR, reduced Amax indicated non‐stomatal limitations that contributed to the negligible Pn. These limitations were on potential thylakoid electron transport rates of PSI and II, pointing to photosystem functioning as a major limiting step in photosynthesis. This agrees with decreases in actual photochemical efficiency of PSII (Fv′/Fm′), quantum yield of photosynthetic non‐cyclic electron transport (?e) and energy‐driven photochemical events (qP), although the impact on these parameters would also include down‐regulation processes. When compared to DR, Prel retained a higher functional state of the photosynthetic machinery, justifying reduced need for photoprotective mechanisms (non‐photochemical quenching, zeaxanthin, lutein, β‐carotene) and maintenance of the balance between energy capture and dissipative pigments. The highest increases in fructose, glucose, arabinose and sorbitol in Prel might be related to tolerance to a lower oxidative state. All cultivars had reduced Amax due to daytime stomatal closure in well‐watered conditions. Under moderate drought, Prel had highest tolerance, higher leaf hydration and maintenance of important photochemical use of energy. However, water shortage caused appreciable non‐stomatal limitations to photosynthesis linked to regulation/imbalance at the metabolic level (and growth) in all cultivars. This included damage, as reflected in decreased potential photosystem functioning, pointing to higher sensitivity of photosynthesis to drought than is commonly assumed.  相似文献   

5.
The chlorophyll fluorescence parameter Fv/Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three‐tiered approach of phenotyping by Fv/Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North‐Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv/Fm. The high Fv/Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non‐significant under the given heat stress. This study validated that our three‐tiered approach of phenotyping by Fv/Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis.  相似文献   

6.
The influence of long‐term drought stress on photosynthesis of Japanese mountain birch (Betula ermanii Cham.) was examined using chlorophyll fluorescence and gas exchange measurements. Drought stress was imposed in potted plants by reducing irrigation frequency from daily (control) to twice‐weekly and once‐weekly. Thirty‐day‐old leaves, which had developed under fully stressed conditions, were used for the measurements. The decline in net CO2 assimilation rate (A) observed in situ in drought‐stressed plants resulted from a lower intercellular CO2 concentration (Ci) due to stomatal closure but the carboxylation efficiency was not affected as there was no difference in the initial slope of the A/Ci response after watering. Although there were no treatment differences in A at Ci below 270 μmol mol?1 (with ambient air at 360 μmol mol?1 CO2), higher electron transport rate (ETR), photochemical quenching (qP) and the efficiency of energy conversion of open PSII (Fv′/Fm′), and similar or even lower non‐photochemical quenching (NPQ) were observed at a given Ci in drought‐stressed plants (of both twice‐ and once‐weekly irrigation), suggesting a higher fraction of open PSII resulting from energy dissipation achieved through higher electron flow rather than through thermal dissipation in PSII antennae. The once‐weekly watered plants showed a lower ratio of gross carbon assimilation rate to ETR (A*/ETR), suggesting an enhanced alternative pathway of electron flow probably involving the Mehler‐peroxidase (MP) reaction as indicated by a higher ΦPSII at a given ΦCO2 under non‐photorespiratory conditions. On the other hand, plants of twice‐weekly watering exhibited almost the same A*/ETR and ΦPSII–ΦCO2 relationship as control plants, indicating no enhanced alternative pathways under mild drought stress.  相似文献   

7.
Gas exchange and chlorophyll fluorescence techniques were used to evaluate the acclimation capacity of the schlerophyll shrub Heteromeles arbutifolia M. Roem. to the multiple co-occurring summer stresses of the California chaparral. We examined the influence of water, heat and high light stresses on the carbon gain and survival of sun and shade seedlings via a factorial experiment involving a slow drying cycle applied to plants grown outdoors during the summer. The photochemical efficiency of PSII exhibited a diurnal, transient decrease (δF/Fm′) and a chronic decrease or photoinhibition (Fv/Fm) in plants exposed to full sunlight. Water stress enhanced both transient decreases of δF/Fm’and photoinhibition. Effects of decreased δF/Fm’and Fv/Fm on carbon gain were observed only in well-watered plants since in water-stressed plants they were overidden by stomatal closure. Reductions in photochemical efficiency and stomatal conductance were observed in all plants exposed to full sunlight, even in those that were well-watered. This suggested that H. arbutifolia sacrificed carbon gain for water conservation and photoprotection (both structurally via shoot architecture and physiologically via down-regulation) and that this response was triggered by a hot and dry atmosphere together with high PFD, before severe water, heat or high PFD stresses occur. We found fast adaptive adjustments of the thermal stability of PSII (diurnal changes) and a superimposed long-term acclimation (days to weeks) to high leaf temperatures. Water stress enhanced resistance of PSII to high temperatures both in the dark and over a wide range of PFD. Low PFD protected photochemical activity against inactivation by heat while high PFD exacerbated damage of PSII by heat. The greater interception of radiation by horizontally restrained leaves relative to the steep leaves of sun-acclimated plants caused photoinhibition and increased leaf temperature. When transpirational cooling was decreased by water stress, leaf temperature surpassed the limits of chloroplast thermostability. The remarkable acclimation of water-stressed plants to high leaf temperatures proved insufficient for the semi-natural environmental conditions of the experiment. Summer stresses characteristic of Mediterranean-type climates (high leaf temperatures in particular) are a potential limiting factor for seedling survival in H. arbutifolia, especially for shade seedlings lacking the crucial structural photoprotection provided by steep leaf angles.  相似文献   

8.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

9.
CO2 assimilation, xanthophyll cycle pigments and PSII efficiency were analyzed in two different ages of pumpkin leaves (Cucurbita pepo L. cv. Ambassador) exposed to 150 nmol mol-1 of ozone (5 days, 5 h day-1). Gas-exchange measurements revealed a reduction in CO2 assimilation and stomatal conductance, accompanied by an increase in the intercellular CO2 concentration both in young and in mature leaves as compared to their respective controls. In both leaves, F0 remained unchanged, while Fm and the Fv/Fm ratio decreased after O3 fumigation, indicating that ozone may induce an alteration in the capability of photosystem II (PSII) to reduce the primary acceptor QA. In the mature leaves the photochemical quenching (qp) was significantly lowered by the pollutant, but this was not the case in the young leaves where qp did not change. In both mature and young ozonated pumpkin leaves, the development of non-photochemical quenching caused a decrease in the PSII photochemical rate, as shown by the correlation between Fv/Fm and the de-epoxidation state of dark-adapted leaves. Decreases in the Fv/Fm ratio are generally attributed to damage to the PSII reaction centre, apart from the down-regulation of the capacity of PSII electron transport. While in young ozonated leaves the decrease in the Fv/Fm ratio was not associated with damage to the D1 protein, in mature ozonated pumpkin leaves, the decrease in the Fv/Fm was accompanied by a significant decline in the D1 content. In conclusion, ozone exposure induces alterations in the light reactions of photosynthesis in both young and mature leaves. However, in young leaves the engagement of the xanthophyll cycle appears to counteract ozone effects against the photosynthetic apparatus as demonstrated by the absence of damage to the D1 protein. On the other hand, the loss of D1 protein in mature fumigated leaves suggests that the activation of the xanthophyll cycle is not sufficient to prevent photoinhibition, probably because a physiological state of senescence adds to the oxidative stress.  相似文献   

10.
Photosynthetic gas exchange, vegetative growth, water relations and fluorescence parameters as well as leaf anatomical characteristics were investigated on young plants of two Olea europaea L. cultivars (Chemlali and Zalmati), submitted to contrasting water availability regimes. Two-year-old olive trees, grown in pots in greenhouse, were not watered for 2 months. Relative growth rate (RGR), leaf water potential (ΨLW) and the leaf relative water content (LWC) of the two cultivars decreased with increasing water stress. Zalmati showed higher values of RGR and LWC and lower decreased values of ΨLW than Chemlali, in response to water deficit, particularly during severe drought stress. Water stress also caused a marked decline on photosynthetic capacity and chlorophyll fluorescence. The net photosynthetic rate, stomatal conductance, transpiration rate, the maximal photochemical efficiency of PSII (F v/F m) and the intrinsic efficiency of open PSII reaction centres (F′ v/F′ m) decreased as drought stress developed. In addition, drought conditions, reduced leaf chlorophyll and carotenoids contents especially at severe water stress. However, Zalmati plants were the less affected when compared with Chemlali. In both cultivars, stomatal control was the major factor affecting photosynthesis under moderate drought stress. At severe drought-stress levels, the non-stomatal component of photosynthesis is inhibited and inactivation of the photosystem II occurs. Leaf anatomical parameters show that drought stress resulted in an increase of the upper epidermis and palisade mesophyll thickness as well as an increase of the stomata and trichomes density. These changes were more characteristic in cv. ‘Zalmati’. Zalmati leaves also revealed lower specific leaf area and had higher density of foliar tissue. From the behaviour of Zalmati plants, with a smaller reduction in relative growth rate, net assimilation rate and chlorophyll fluorescence parameters, and with a thicker palisade parenchyma, and a higher stomatal and trichome density, we consider this cultivar more drought-tolerant than cv. Chemlali and therefore, very promising for cultivation in arid areas.  相似文献   

11.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

12.
  • Welsh onions (Allium fistulosum L.) are often affected by stressful environments, such as high light and drought, during summer cultivation, which hinders their growth.
  • We used CO2 assimilation, OJIP transient and MR curves to analyse the photosynthetic characteristics of Welsh onion.
  • The results showed that single high light stress caused a decrease in the net photosynthesis rate through stomatal limitation, while the single drought treatment and the combined stress induced nonstomatal limitation. FO and FJ increased, Fm decreased, and a distinct K‐phase was induced. High light and drought stress blocked MR transients, leading to a gradual decrease in VPSI and VPSII‐PSI.
  • In general, photosynthesis of Welsh onion was inhibited by high light and drought, which destroyed the receptor and donor side of PSII and reduced electron transport capacity of PSII and PSI.
  相似文献   

13.
Xylella fastidiosa is a xylem‐limited bacterial plant pathogen that causes bacterial leaf scorch in its hosts. Our previous work showed that water stress enhances leaf scorch symptom severity and progression along the stem of a liana, Parthenocissus quinquefolia, infected by X. fastidiosa. This paper explores the photosynthetic gas exchange responses of P. quinquefolia, with the aim to elucidate mechanisms behind disease expression and its interaction with water stress. We used a 2 × 2‐complete factorial design, repeated over two growing seasons, with high and low soil moisture levels and infected and non‐infected plants. In both years, low soil moisture levels reduced leaf water potentials, net photosynthesis and stomatal conductance at all leaf positions, while X. fastidiosa‐infection reduced these parameters at basally located leaves only. Intercellular CO2 concentrations were reduced in apical leaves, but increased at the most basal leaf location, implicating a non‐stomatal reduction of photosynthesis in leaves showing the greatest disease development. This result was supported by measured reductions in photosynthetic rates of basal leaves at high CO2 concentrations, where stomatal limitation was eliminated. Repeated measurements over the summer of 2000 showed that the effects of water stress and infection were progressive over time, reaching their greatest extent in September. By reducing stomatal conductances at moderate levels of water stress, P. quinquefolia maintained relatively high leaf water potentials and delayed the onset of photosynthetic damage due to pathogen and drought‐induced water stress. In addition, chlorophyll fluorescence measurements showed that P. quinquefolia has an efficient means of dissipating excess light energy that protects the photosynthetic machinery of leaves from irreversible photoinhibitory damage that may occur during stress‐induced stomatal limitation of photosynthesis. However, severe stress induced by disease and drought eventually led to non‐stomatal decreases in photosynthesis associated with leaf senescence.  相似文献   

14.
For the first time, the adaptive role of the rolling leaf trait for tolerance of wheat plants (Triticum aestivum L.) to the main factor of drought, high temperature, was demonstrated. Cv. Otan with high degree of this trait expression was more tolerant to temperature stress (40°C, 4 h during 2 days (2h/day)). Changes in parameters of chlorophyll fluorescence, F v/F m and R Fd690, suggest that cv. Otan was tolerant to inhibition of photochemical activities of photosystem II (PSII) and photosystem I (PSI). Furthermore, high temperature had no effect on the rate of net photosynthesis (P N) in cv. Otan, although it decreased this parameter in the other wheat cultivars. The main factors, which provid for this tolerance, were adaptation of the photosynthetic pigment system by active accumulation of carotenoids, more stable structural organization of PSII and PSI, and their high photosynthetic activities, as well as efficient stomatal regulation of transpiration and supplying of mesophyll cells with CO2. It is hypothesized that the physiological role of the rolling leaf trait is the maintenance of adaptation potential by increasing the efficiency of water metabolism in the flag leaves of wheat under high temperature.  相似文献   

15.
We evaluated the combined effects of elevated CO2 and water availability on photosynthesis in barley. Soil and plant water content decreased with water stress, but less under elevated CO2 concentration (EC) compared with ambient CO2 concentration (AC). During water stress, stomatal conductance, carboxylation rate, RuBP regeneration, and the rate of triose phosphate utilisation (TPU) were decreased but less when plants grew under EC. Drought treatments caused only a slight effect on maximum photochemical efficiency (variable to maximum fluorescence ratio, Fv/Fm), whereas the actual quantum yield (ΦPS2), maximum electron transport rate (Jmax) and photochemical quenching (qP) were decreased and the non photochemical quenching (NPQ) was enhanced. Under water deficit, the allocation of electrons to CO2 assimilation was diminished by 49 % at AC and by 26 % at EC while the allocation to O2 reduction was increased by 15 % at AC and by 12 % at EC.  相似文献   

16.
Plant growth and survival depends critically on photo assimilates. Pathogen infection leads to changes in carbohydrate metabolism of plants. In this study, we monitored changes in the carbohydrate metabolism in the grapevine inflorescence and leaves using Botrytis cinerea and Botrytis pseudo cinerea. Fluctuations in gas exchange were correlated with variations in chlorophyll a fluorescence. During infection, the inflorescences showed an increase in net photosynthesis (Pn) with a stomatal limitation. In leaves, photosynthesis decreased, with a non‐stomatal limitation. A decrease in the effective photosystem II (PSII) quantum yield (ΦPSII) was accompanied by an increase in photochemical quenching (qP) and non‐photochemical quenching (qN). The enhancement of qP and ΦPSII could explain the observed increase in Pn. In leaves, the significant decline in ΦPSII and qP, and increase in qN suggest that energy was mostly oriented toward heat dissipation instead of CO2 fixation. The accumulation of glucose and sucrose in inflorescences and glucose and fructose in the leaves during infection indicate that the plant's carbon metabolism is differently regulated in these two organs. While a strong accumulation of starch was observed at 24 and 48 hours post‐inoculation (hpi) with both species of Botrytis in the inflorescences, a significant decrease with B. cinerea at 24 hpi and a significant increase with B. pseudo cinerea at 48 hpi were observed in the leaves. On the basis of these results, it can be said that during pathogen attack, the metabolism of grapevine inflorescence and leaf is modified suggesting distinct mechanisms modifying gas exchange, PSII activity and sugar contents in these two organs.  相似文献   

17.
Flavescence dorée (FD) is among the major grapevine diseases causing high management costs; curative methods against FD are unavailable. In FD‐infected plants, decrease in photosynthesis is usually recorded, but deregulation in stomatal control of leaf gas exchange during FD infection and recovery is unknown. We measured the seasonal time course of gas exchange rates in two cultivars (‘Barbera’ and ‘Nebbiolo’) during the term of 1 year when grapevines experienced a water stress and another with no drought, with difference in gas exchange rates in response to FD infection and recovery as assessed by symptom observation and phytoplasma detection through PCR analysis. Chlorophyll fluorescence was also evaluated at the time of maximum symptom severity in ‘Barbera’, the cultivar showing the most severe stress response to FD infection, causing the highest damage in vineyards of north‐western Italy. In FD‐infected plants, net photosynthesis and transpiration gradually decreased during the season, more during the no drought year than during drought. During recovery, healthy (PCR negative) plants infected 2 years before, but not those infected an year before, regained the gas exchange performances to the level as measured before infection. The relationships between stomatal conductance and the residual leaf intercellular CO2 concentration (ci) discriminated healthy versus FD‐infected and recovered plants; at the same ci, FD‐infected leaves had higher non‐photochemical quenching than healthy ones. We conclude that metabolic, not stomatal, leaf gas exchange limitation in FD‐infected and recovered grapevines is the basis of plant response to FD disease. In addition, we also suggest that such response is dependent upon water stress, by showing that water stress superimposes on FD infection in terms of stomatal and metabolic non‐stomatal limitations to carbon assimilation.  相似文献   

18.
Light-saturated net leaf photosynthesis (Asat), CO2 response curves (A/Ci), current photochemical capacity (Fv/Fm) and pigment contents were measured in leaves of Populus nigra (Clone T107) which had been exposed to ozone stress in open-top chambers for the entire growth period. Surprisingly, not only elevated (ao+, i.e. ambient air + 50 mm3 m?3 ozone) but also ambient (aa) ozone concentrations led to a reduction in Asat, in comparison with leaves exposed to air containing almost no ozone (cf?, i.e. charcoal filtered ambient air). The very small change in leaf conductance (g1) indicated that the decrease in Asat was not due to stomatal limitation. This finding was supported by the fact that, a decrease in carboxylation efficiency (CE) correlated with a loss in Asat. In comparison to cf? leaves, aa leaves showed no change in current photochemical capacity (Fv/Fm) throughout the whole experiment. However, a marked decline in Fv/Fm in ao+ leaves was observed at a time when Asat and CE were already decreased by about 45% and 60% respectively. As the chlorophyll b content of leaves is known to correlate with the amount of LHC and PSII centres, it was used to normalize fluorescence parameters in relation to PSII centres present. The normalized values for Fm and F0 increased with the dosage of ozone in ao+ leaves but not in aa leaves, indicating a change of the pigment content of PSII in the former, but not in the latter. These data led to the conclusion that ozone interacts primarily with components of the Calvin cycle, which results in a decrease in Asat, with subsequent feedback on the current photochemical capacity of PSII centres.  相似文献   

19.
Arabidopsis thaliana grown in a light regime that included ultraviolet-B (UV-B) radiation (6 kJ m−2 d−1) had similar light-saturated photosynthetic rates but up to 50% lower stomatal conductance rates, as compared to plants grown without UV-B radiation. Growth responses of Arabidopsis to UV-B radiation included lower leaf area (25%) and biomass (10%) and higher UV-B absorbing compounds (30%) and chlorophyll content (52%). Lower stomatal conductance rates for plants grown with UV-B radiation were, in part, due to lower stomatal density on the adaxial surface. Plants grown with UV-B radiation had more capacity to down regulate photochemical efficiency of photosystem II (PSII) as shown by up to 25% lower φPSII and 30% higher non-photochemical quenching of chlorophyll fluorescence under saturating light. These contributed to a smaller reduction in the maximum photochemical efficiency of PSII (F v/F m), greater dark-recovery of F v/F m, and higher light-saturated carbon assimilation and stomatal conductance and transpiration rates after a four-hour high light treatment for plants grown with UV-B radiation. Plants grown with UV-B were more tolerant to a 12 day drought treatment than plants grown without UV-B as indicated by two times higher photosynthetic rates and 12% higher relative water content. UV-B-grown plants also had three times higher proline content. Higher tolerance to drought stress for Arabidopsis plants grown under UV-B radiation may be attributed to both increased proline content and decreased stomatal conductance. Growth of Arabidopsis in a UV-B-enhanced light regime increased tolerance to high light exposure and drought stress.  相似文献   

20.
Changes in climate, land management and fire regime have contributed to woody species expansion into grasslands and savannas worldwide. In the USA, Pinus ponderosa P.&C. Lawson and Juniperus virginiana L. are expanding into semiarid grasslands of Nebraska and other regions of the Great Plains. We examined P. ponderosa and J. virginiana seedling response to soil water content, one of the most important limiting factors in semiarid grasslands, to provide insight into their success in the region. Photosynthesis, stomatal conductance, maximum photochemical efficiency of PSII, maximum carboxylation velocity, maximum rate of electron transport, stomatal limitation to photosynthesis, water potential, root‐to‐shoot ratio, and needle nitrogen content were followed under gradual soil water depletion for 40 days. J. virginiana maintained lower Ls, higher A, gs, and initial Fv/Fm, and displayed a more gradual decline in Vcmax and Jmax with increasing water deficit compared to P. ponderosa. J. virginiana also invested more in roots relative to shoots compared to P. ponderosa. Fv/Fm showed high PSII resistance to dehydration in both species. Photoinhibition was observed at ~30% of field capacity. Soil water content was a better predictor of A and gs than Ψ, indicating that there are other growth factors controlling physiological processes under increased water stress. The two species followed different strategies to succeed in semiarid grasslands. P. ponderosa seedlings behaved like a drought‐avoidant species with strong stomatal control, while J. virginiana was more of a drought‐tolerant species, maintaining physiological activity at lower soil water content. Differences between the studied species and the ecological implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号