首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cowperthwaite MC  Bull JJ  Meyers LA 《Genetics》2005,170(4):1449-1457
Beneficial mutations are the driving force of evolution by natural selection. Yet, relatively little is known about the distribution of the fitness effects of beneficial mutations in populations. Recent work of Gillespie and Orr suggested some of the first generalizations for the distributions of beneficial fitness effects and, surprisingly, they depend only weakly on biological details. In particular, the theory suggests that beneficial mutations obey an exponential distribution of fitness effects, with the same exponential parameter across different regions of genotype space, provided only that few possible beneficial mutations are available to that genotype. Here we tested this hypothesis with a quasi-empirical model of RNA evolution in which fitness is based on the secondary structures of molecules and their thermodynamic stabilities. The fitnesses of randomly selected genotypes appeared to follow a Gumbel-type distribution and thus conform to a basic assumption of adaptation theory. However, the observed distributions of beneficial fitness effects conflict with specific predictions of the theory. In particular, the distributions of beneficial fitness effects appeared exponential only when the vast majority of small-effect beneficial mutations were ignored. Additionally, the distribution of beneficial fitness effects varied with the fitness of the parent genotype. We believe that correlation of the fitness values among similar genotypes is likely the cause of the departure from the predictions of recent adaptation theory. Although in conflict with the current theory, these results suggest that more complex statistical generalizations about beneficial mutations may be possible.  相似文献   

2.
Theory predicts that fitness decline via mutation accumulation will depend on population size, but there are only a few direct tests of this key idea. To gain a qualitative understanding of the fitness effect of new mutations, we performed a mutation accumulation experiment with the facultative sexual rotifer Brachionus calyciflorus at six different population sizes under UV‐C radiation. Lifetime reproduction assays conducted after ten and sixteen UV‐C radiations showed that while small populations lost fitness, fitness losses diminished rapidly with increasing population size. Populations kept as low as 10 individuals were able to maintain fitness close to the nonmutagenized populations throughout the experiment indicating that selection was able to remove the majority of large effect mutations in small populations. Although our results also seem to imply that small populations are effectively immune to mutational decay, we caution against this interpretation. Given sufficient time, populations of moderate to large size can experience declines in fitness from accumulating weakly deleterious mutations as demonstrated by fitness estimates from simulations and, tentatively, from a long‐term experiment with populations of moderate size. There is mounting evidence to suggest that mutational distributions contain a heavier tail of large effects. Our results suggest that this is also true when the mutational spectrum is altered by UV radiation.  相似文献   

3.
The role of mutations in evolution depends upon the distribution of their effects on fitness. This distribution is likely to depend on the environment. Indeed genotype‐by‐environment interactions are key for the process of local adaptation and ecological specialization. An important trait in bacterial evolution is antibiotic resistance, which presents a clear case of change in the direction of selection between environments with and without antibiotics. Here, we study the distribution of fitness effects of mutations, conferring antibiotic resistance to Escherichia coli, in benign and stressful environments without drugs. We interpret the distributions in the light of a fitness landscape model that assumes a single fitness peak. We find that mutation effects (s) are well described by a shifted gamma distribution, with a shift parameter that reflects the distance to the fitness peak and varies across environments. Consistent with the theoretical predictions of Fisher's geometrical model, with a Gaussian relationship between phenotype and fitness, we find that the main effect of stress is to increase the variance in s. Our findings are in agreement with the results of a recent meta‐analysis, which suggest that a simple fitness landscape model may capture the variation of mutation effects across species and environments.  相似文献   

4.
Many species require captive breeding to ensuretheir survival. The eventual aim of suchprograms is usually to reintroduce the speciesinto the wild. Populations in captivitydeteriorate due to inbreeding depression, lossof genetic diversity, accumulation of newdeleterious mutations and genetic adaptationsto captivity that are deleterious in the wild.However, there is little evidence on themagnitude of these problems. We evaluatedchanges in reproductive fitness in populationsof Drosophila maintained under benigncaptive conditions for 50 generations witheffective population sizes of 500 (2replicates), 250 (3), 100 (4), 50 (6) and 25(8). At generation 50, fitness in the benigncaptive conditions was reduced in smallpopulations due to inbreeding depression andincreased in some of the large populations dueto modest genetic adaptation. When thepopulations were moved to `wild' conditions,all 23 populations showed a marked decline(64–86%percnt;) in reproductive fitness compared tocontrols. Reproductive fitness showed acurvilinear relationship with population size,the largest and smallest population sizetreatments being the worst. Genetic analysesindicated that inbreeding depression andgenetic adaptation were responsible for thegenetic deterioration in `wild' fitness.Consequently, genetic deterioration incaptivity is likely to be a major problem whenlong-term captive bred populations ofendangered species are returned to the wild. Aregime involving fragmentation of captivepopulations of endangered species is suggestedto minimize the problems.  相似文献   

5.
The consequences of mutations for population fitness depends on their individual selection coefficients and the effective population size. An earlier study of Caenorhabditis elegans spontaneous mutation accumulation lines evolved for 409 generations at three population sizes found that Ne  = 1 populations declined significantly in fitness whereas the fitness of larger populations (Ne  = 5, 50) was indistinguishable from the ancestral control under benign conditions. To test if larger MA populations harbor a load of cryptic deleterious mutations that are obscured under benign laboratory conditions, we measured fitness under osmotic stress via exposure to hypersaline conditions. The fitness of Ne  = 1 lines exhibited a further decline under osmotic stress compared to benign conditions. However, the fitness of larger populations remained indistinguishable from that of the ancestral control. The average effects of deleterious mutations in Ne  = 1 lines were estimated to be 22% for productivity and 14% for survivorship, exceeding values previously detected under benign conditions. Our results suggest that fitness decline is due to large effect mutations that are rapidly removed via selection even in small populations, with implications for conservation practices. Genetic stochasticity may not be as potent and immediate a threat to the persistence of small populations as other demographic and environmental stochastic factors.  相似文献   

6.
Several important biological phenomena, including genetic recombination and sexual reproduction, could have evolved to counteract genome contamination by deleterious mutations. This postulate would be especially relevant if it were shown that deleterious mutations interact in such a way that their individual negative effects are reinforced by each other. The hypothesis of synergism can be tested experimentally by crossing organisms bearing deleterious mutations and comparing the fitness of the parents and their progeny. The present study used laboratory strains of the budding yeast burdened with mutations resulting from absence of a major DNA mismatch repair function. Only in one, or possibly two, crosses out of eight did fitness of the progeny deviate from that of their parents in a direction indicating synergism. Furthermore, the distributions of progeny fitness were not skewed as would be expected if strong interactions were present. The choice of experimental material ensured that genetic recombination was extensive, all four meiotic products were available for fitness assays, and that the mutations were probably numerous. Despite this generally favourable experimental setting, synergism did not appear to be a dominating force shaping fitness of yeast containing randomly generated mutations.  相似文献   

7.
The rarity of beneficial mutations has frustrated efforts to develop a quantitative theory of adaptation. Recent models of adaptive walks, the sequential substitution of beneficial mutations by selection, make two compelling predictions: adaptive walks should be short, and fitness increases should become exponentially smaller as successive mutations fix. We estimated the number and fitness effects of beneficial mutations in each of 118 replicate lineages of Aspergillus nidulans evolving for approximately 800 generations at two population sizes using a novel maximum likelihood framework, the results of which were confirmed experimentally using sexual crosses. We find that adaptive walks do indeed tend to be short, and fitness increases become smaller as successive mutations fix. Moreover, we show that these patterns are associated with a decreasing supply of beneficial mutations as the population adapts. We also provide empirical distributions of fitness effects among mutations fixed at each step. Our results provide a first glimpse into the properties of multiple steps in an adaptive walk in asexual populations and lend empirical support to models of adaptation involving selection towards a single optimum phenotype. In practical terms, our results suggest that the bulk of adaptation is likely to be accomplished within the first few steps.  相似文献   

8.
Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness‐related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.  相似文献   

9.
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments.  相似文献   

10.
The idea that interactions between mutations influence adaptation by driving populations to low and high fitness peaks on adaptive landscapes is deeply ingrained in evolutionary theory. Here, we investigate the impact of epistasis on evolvability by challenging populations of two Pseudomonas aeruginosa clones bearing different initial mutations (in rpoB conferring rifampicin resistance, and the type IV pili gene network) to adaptation to a medium containing l ‐serine as the sole carbon source. Despite being initially indistinguishable in fitness, populations founded by the two ancestral genotypes reached different fitness following 300 generations of evolution. Genome sequencing revealed that the difference could not be explained by acquiring mutations in different targets of selection; the majority of clones from both ancestors converged on one of the following two strategies: (1) acquiring mutations in either PA2449 (gcsR, an l ‐serine‐metabolism RpoN enhancer binding protein) or (2) protease genes. Additionally, populations from both ancestors converged on loss‐of‐function mutations in the type IV pili gene network, either due to ancestral or acquired mutations. No compensatory or reversion mutations were observed in RNA polymerase (RNAP) genes, in spite of the large fitness costs typically associated with mutations in rpoB. Although current theory points to sign epistasis as the dominant constraint on evolvability, these results suggest that the role of magnitude epistasis in constraining evolvability may be underappreciated. The contribution of magnitude epistasis is likely to be greatest under the biologically relevant mutation supply rates that make back mutations probabilistically unlikely.  相似文献   

11.
Beneficial mutations fuel adaptation by altering phenotypes that enhance the fit of organisms to their environment. However, the phenotypic effects of mutations often depend on ecological context, making the distribution of effects across multiple environments essential to understanding the true nature of beneficial mutations. Studies that address both the genetic basis and ecological consequences of adaptive mutations remain rare. Here, we characterize the direct and pleiotropic fitness effects of a collection of 21 first‐step beneficial mutants derived from naïve and adapted genotypes used in a long‐term experimental evolution of Escherichia coli. Whole‐genome sequencing was able to identify the majority of beneficial mutations. In contrast to previous studies, we find diverse fitness effects of mutations selected in a simple environment and few cases of genetic parallelism. The pleiotropic effects of these mutations were predominantly positive but some mutants were highly antagonistic in alternative environments. Further, the fitness effects of mutations derived from the adapted genotypes were dramatically reduced in nearly all environments. These findings suggest that many beneficial variants are accessible from a single point on the fitness landscape, and the fixation of alternative beneficial mutations may have dramatic consequences for niche breadth reduction via metabolic erosion.  相似文献   

12.
The spread of bacterial antibiotic resistance mutations is thought to be constrained by their pleiotropic fitness costs. Here we investigate the fitness costs of resistance in the context of the evolution of multiple drug resistance (MDR), by measuring the cost of acquiring streptomycin resistance mutations (StrepR) in independent strains of the bacterium Pseudomonas aeruginosa carrying different rifampicin resistance (RifR) mutations. In the absence of antibiotics, StrepR mutations are associated with similar fitness costs in different RifR genetic backgrounds. The cost of StrepR mutations is greater in a rifampicin‐sensitive (RifS) background, directly demonstrating antagonistic epistasis between resistance mutations. In the presence of rifampicin, StrepR mutations have contrasting effects in different RifR backgrounds: StrepR mutations have no detectable costs in some RifR backgrounds and massive fitness costs in others. Our results clearly demonstrate the importance of epistasis and genotype‐by‐environment interactions for the evolution of MDR.  相似文献   

13.
Unraveling the factors that determine the rate of adaptation is a major question in evolutionary biology. One key parameter is the effect of a new mutation on fitness, which invariably depends on the environment and genetic background. The fate of a mutation also depends on population size, which determines the amount of drift it will experience. Here, we manipulate both population size and genotype composition and follow adaptation of 23 distinct Escherichia coli genotypes. These have previously accumulated mutations under intense genetic drift and encompass a substantial fitness variation. A simple rule is uncovered: the net fitness change is negatively correlated with the fitness of the genotype in which new mutations appear—a signature of epistasis. We find that Fisher's geometrical model can account for the observed patterns of fitness change and infer the parameters of this model that best fit the data, using Approximate Bayesian Computation. We estimate a genomic mutation rate of 0.01 per generation for fitness altering mutations, albeit with a large confidence interval, a mean fitness effect of mutations of ?0.01, and an effective number of traits nine in mutS? E. coli. This framework can be extended to confront a broader range of models with data and test different classes of fitness landscape models.  相似文献   

14.
Beneficial fitness effects are not exponential for two viruses   总被引:1,自引:0,他引:1  
The distribution of fitness effects for beneficial mutations is of paramount importance in determining the outcome of adaptation. It is generally assumed that fitness effects of beneficial mutations follow an exponential distribution, for example, in theoretical treatments of quantitative genetics, clonal interference, experimental evolution, and the adaptation of DNA sequences. This assumption has been justified by the statistical theory of extreme values, because the fitnesses conferred by beneficial mutations should represent samples from the extreme right tail of the fitness distribution. Yet in extreme value theory, there are three different limiting forms for right tails of distributions, and the exponential describes only those of distributions in the Gumbel domain of attraction. Using beneficial mutations from two viruses, we show for the first time that the Gumbel domain can be rejected in favor of a distribution with a right-truncated tail, thus providing evidence for an upper bound on fitness effects. Our data also violate the common assumption that small-effect beneficial mutations greatly outnumber those of large effect, as they are consistent with a uniform distribution of beneficial effects.  相似文献   

15.
The nature of the interaction among deleterious mutations is important to models in many areas of evolutionary biology. In addition, interactions between genetic and environmental factors may affect the predictions of such models. Individuals of unknown genotypes of Arabidopsis thaliana, ecotype Marburg, were exposed to five levels of chemical (EMS) mutagenesis and three levels of Pseudomonas syringae infection. Survival, growth and flowering characteristics of each individual were measured. The logarithm of fitness is expected to be a linear function of mutation number if mutations act independently. Furthermore, the expected number of mutations should be approximately a linear function of time of exposure to mutagen. Therefore, nonlinear effects of mutagen exposure on the logarithm of fitness characters would suggest epistasis between mutations. Similarly, if pathogen infection and mutation act independently of each other, their effects should be additive on a log scale. Statistical interactions between these factors would suggest they do not act independently; particularly, if highly mutated individuals suffer more when infected than do less mutated individuals, this suggests that pathogens and mutations act synergistically. Pseudomonas-infected individuals were shown to have an increased probability of flowering under conditions of short day length, but to ultimately produce fewer flowers than uninfected individuals. This suggests a plastic response to stress and, despite that response, an ultimately deleterious effect of infection on fitness. Leaf rosette growth was negatively and linearly related to the expected number of mutations, and the effects of mutation on different life-cycle stages appeared to be uncorrelated. No significant interactions between pathogen and mutation main effects were found. These results suggest that mutations act multiplicatively with each other and with pathogen infection in determining individual fitness.  相似文献   

16.
Adaptation depends greatly on the distribution of mutation fitness effects (DMFE), but the phenotypic expression of mutations is often environment dependent. The environments faced by multihost pathogens are mostly governed by their hosts and therefore measuring the DMFE on multiple hosts can inform on the likelihood of short‐term establishment and longer term adaptation of emerging pathogens. We explored this by measuring the growth rate of 36 mutants of the lytic bacteriophage φX174 on two host backgrounds, Escherichia coli (EcC) and Salmonella typhimurium (StGal). The DMFE showed higher mean and variance on EcC than on StGal. Most mutations were either deleterious or neutral on both hosts, but a greater proportion of mutations were deleterious on StGal. We identified two mutations with beneficial fitness effects on EcC that were neutral on StGal. Host‐specific differences in fitness were associated with particular functional classes of genes involved in the initial stages of infection in accordance with previous studies of host specificity. Overall, there was a positive correlation between the effects of mutations on each host, suggesting that most new mutations will have general, rather than host‐specific fitness effects. We consider these results in light of simple fitness landscape models of adaptation and discuss the relevance of context‐dependent DMFE for multihost pathogens.  相似文献   

17.
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations—that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype–environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype–environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype–environment interaction would increase the amount of genetic variation maintained by mutation‐selection balance.  相似文献   

18.
Many studies have documented the existence of genotype-environment interaction (GEI) for traits closely related to fitness in natural populations. A type of GEI that is commonly observed is changes in the fitness ranking of genetic groups (families, clones, or inbred lines) in different environments. We refer to such changes in ranking as crossing of reaction norms for fitness. A common interpretation of crossing of reaction norms for fitness is that selection favors different alleles in the different environments (i.e., that “trade-offs” exist). If this is the case, selection could maintain genetic variation, and even lead to reproductive isolation between subpopulations using different environments. Even if the same alleles are favored in every environment, however, deleterious mutations that vary in the magnitude of their effect depending on environment could cause reaction norms for fitness to cross. If deleterious mutations with environment-dependent effects are responsible for maintaining much of the variation leading to crossing of reaction norms for fitness in natural populations, it should be possible to observe crossing of reaction norms for fitness among otherwise genetically identical lines bearing newly arisen spontaneous mutations. We examined the contribution of new mutations to GEI for fitness in Drosophila melanogaster. Eighteen lines were derived from a common, highly inbred base stock, and maintained at a population size of 10 pairs for over 200 generations, to allow them to accumulate spontaneous mutations. Because of the small population size of the lines, selection against mildly deleterious mutations should have been relatively ineffective. The lines were tested for productivity (number of surviving adult progeny from a standard number of parents) in five different environmental treatments, comprising different food media, temperatures, and levels of competition. The lines showed highly significant GEI for productivity, owing largely to considerable changes in ranking in the different environments. We conclude that mutations that are deleterious on average, but whose quantitative effects depend on environment, could be responsible for maintaining much of the variation leading to crossing of reaction norms for fitness that has been observed in samples of D. melanogaster from the wild.  相似文献   

19.
Understanding how diversity emerges in a single niche is not fully understood. Rugged fitness landscapes and epistasis between beneficial mutations could explain coexistence among emerging lineages. To provide an experimental test of this notion, we investigated epistasis among four pleiotropic mutations in rpoS, mglD, malT, and hfq present in two coexisting lineages that repeatedly fixed in experimental populations of Escherichia coli. The mutations were transferred into the ancestral background individually or in combination of double or triple alleles. The combined competitive fitness of two or three beneficial mutations from the same lineage was consistently lower than the sum of the competitive fitness of single mutants—a clear indication of negative epistasis within lineages. We also found sign epistasis (i.e., the combined fitness of two beneficial mutations lower than the ancestor), not only from two different lineages (i.e., hfq and rpoS) but also from the same lineage (i.e., mglD and malT). The sign epistasis between loci of different lineages indeed indicated a rugged fitness landscape, providing an epistatic explanation for the coexistence of distinct rpoS and hfq lineages in evolving populations. The negative and sign epistasis between beneficial mutations within the same lineage can further explain the order of mutation acquisition.  相似文献   

20.
The rate and fitness effects of new mutations have been investigated by mutation accumulation (MA) experiments in which organisms are maintained at a constant minimal population size to facilitate the accumulation of mutations with minimal efficacy of selection. We evolved 35 MA lines of Caenorhabditis elegans in parallel for 409 generations at three population sizes (N = 1, 10, and 100), representing the first spontaneous long-term MA experiment at varying population sizes with corresponding differences in the efficacy of selection. Productivity and survivorship in the N = 1 lines declined by 44% and 12%, respectively. The average effects of deleterious mutations in N = 1 lines are estimated to be 16.4% for productivity and 11.8% for survivorship. Larger populations (N = 10 and 100) did not suffer a significant decline in fitness traits despite a lengthy and sustained regime of consecutive bottlenecks exceeding 400 generations. Together, these results suggest that fitness decline in very small populations is dominated by mutations with large deleterious effects. It is possible that the MA lines at larger population sizes contain a load of cryptic deleterious mutations of small to moderate effects that would be revealed in more challenging environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号