首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cornforth, M. N. Analyzing Radiation-Induced Complex Chromosome Rearrangements by Combinatorial Painting. Radiat. Res. 155, 643-659 (2001). Prior to the advent of whole-chromosome painting, it was universally assumed that virtually all radiation-induced exchanges represented a simple rejoining between pairs of chromosome breaks. It is now known that a substantial proportion of such exchanges are actually complex, meaning that they involve the interaction of three (or more) breaks distributed among two (or more) chromosomes. The purpose of this review is to discuss some of the implications of aberration analysis using whole-chromosome painting, with emphasis given to newer combinatorial painting schemes that allow for the unambiguous identification of all homologous chromosome pairs. Such analysis requires reconsideration of how resulting information is to be handled for the purposes of tabulating and communicating raw data, quantifying aberration yields, and presenting experimental results in a cogent manner. Facilitating these objectives requires the introduction of certain concepts and terminologies that have no counterpart in conventional cytogenetic analyses.  相似文献   

2.
Single-color painting of whole chromosomes, or protocols in which only a few chromosomes are distinctively painted, will always fail to detect a proportion of complex exchanges because they frequently produce pseudosimple painting patterns that are indistinguishable from those produced by bona fide simple exchanges. When 24-color multi-fluor FISH (mFISH) was employed for the purpose of distinguishing (truly) simple from pseudosimple exchanges, it was confirmed that the acute low-LET radiation dose-response relationship for simple exchanges lacked significant upward curvature. This result has been interpreted to indicate that the formation of simple exchanges requires only one chromosome locus be damaged (e.g. broken) by radiation to initiate an exchange-not two, as classical cytogenetic theory maintains. Because a one-lesion mechanism implies single-track action, it follows that the production of simple exchanges should not be influenced by changes in dose rate. To examine this prediction, we irradiated noncycling primary human fibroblasts with graded doses of (137)Cs gamma rays at an acute dose rate of 1.10 Gy/min and compared, using mFISH, the yield of simple exchanges to that observed after exposure to the same radiation delivered at a chronic dose rate of 0.08 cGy/min. The shape of the dose response was found to be quasi-linear for both dose rates, but, counter to providing support for a one-lesion mechanism, the yield of simple aberrations was greatly reduced by protracted exposure. Although chronic doses were delivered at rates low enough to produce damage exclusively by single-track action, this did not altogether eliminate the formation of complex aberrations, an analysis of which leads to the conclusion that a single track of low-LET radiation is capable of inducing complex exchanges requiring up to four proximate breaks for their formation. For acute exposures, the ratio of simple reciprocal translocations to simple dicentrics was near unity.  相似文献   

3.
Chromosome aberrations produced by ionizing radiation are assumed to develop from DNA double-strand breaks (DSBs) which interact pairwise, in an exchange event. Dicentrics and centric rings are aberrations that exemplify inter- and intrachromosomal exchanges, respectively. We show from a survey of published data that for acute low-LET irradiation of resting human lymphocytes the observed ratio of dicentrics to centric rings is approximately five times smaller than predicted by a pairwise interaction model which assumes complete randomness. Such a low ratio can be interpreted as evidence for a proximity effect, favoring exchanges of an intrachromosomal type. That is, since DSBs induced close together have an above-average chance of pairwise interaction, the observed excess of centric rings indicates that at the time of irradiation there is some degree of spatial confinement for the two arms of a single chromosome. Assuming the excess of centric rings is indeed due to proximity effects, the data are used to estimate that the volume of a domain, within which any one lymphocyte chromosome is localized at one instant during the G0/G1 phase, is at most approximately 20% of the nuclear volume.  相似文献   

4.
Cytogenetic analysis of chromosomal aberrations (CA) in 175,229 cells from 1113 individuals, both unexposed and occupationally or environmentally exposed to heavy metals (mercury and lead), organic (styrene, formaldehyde, phenol and benzo(a)pyrene) and inorganic (sulfur and nitrogen oxides, hydrogen and ammonium fluorides) volatile substances and/or ionizing radiation was performed. In addition, 11,250 cells from 225 individuals were scored for the frequency of sister-chromatid exchanges (SCE). Increased frequencies of CA were found in all occupationally exposed groups. A principal difference between the exposure to heavy metals and organic substances was found: increase in the CA frequency was dependent on duration of exposure to mercury but not dependent on duration of exposure to styrene, formaldehyde and phenol. A higher CA incidence was found in lymphocytes of children living in the vicinity of a plant manufacturing phosphate fertilizers. This indicates that children are a sensitive study group for the assessment of environmental exposure. However, the results of SCE analysis in these children were inconclusive. Exposure to ionizing radiation was found to cause chromosome breaks and chromatid exchanges in Chernobyl clean-up workers and chromatid breaks, chromatid exchanges, dicentric chromosomes and chromosome translocations in workers from the Ignalina Nuclear Power Plant. The increased frequency of chromatid exchanges in individuals exposed to ionizing radiation was quite unexpected. This may be attributed to the action of some unrecognized life-style or occupational factors, or to be a result of radiation-induced genomic instability. Also an increased SCE frequency was found in lymphocytes of Chernobyl clean-up workers.  相似文献   

5.
We have transfected a Chinese hamster ovary cell line (CHO 6) with a plasmid that inducibly expresses the Eco RI restriction endonuclease gene in the presence of cadmium sulfate (CdSO4). Expression of Eco RI results in DNA double-strand breaks, which can lead to chromosome aberrations. The new line, designated CHO 10, also has a low level of constitutive expression of Eco RI in the absence of CdSO4 without any cytogenetic effect. This suggested that these cells may be efficient at repairing low levels of DNA double-strand breaks. To test this, both cell lines were exposed to ionizing radiation, and aberration yields were analyzed with or without induction of Eco RI. CHO 10 cells showed increased radiosensitivity after G1 irradiation, but after G2 exposure, only doses greater than or equal to 0.4 Gy caused more damage in CHO 10 cells. We conclude that CHO 10 cells can tolerate constitutive expression of Eco RI, but that when the cells are subjected to additional stress, in this case ionizing radiation, they become very sensitive to DNA double-strand breaks.  相似文献   

6.
Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.  相似文献   

7.
The DNA double-strand breaks (DSBs) are considered to be the most relevant lesions for the deleterious effects of ionizing radiation exposure. The discovery that the induction of DSBs is rapidly followed by the phosphorylation of H2AX histone at Ser-139, favoring repair protein recruitment or access, opens the possibility for a wide range of research. This phosphorylated histone, named gamma-H2AX, has been shown to form foci in interphase nuclei as well as megabase chromatin domains surrounding the DNA lesion on chromosomes. Using detection of gamma-H2AX on germ cell mitotic chromosomes 2 h after gamma-irradiation, we studied radiation-induced DSBs during the G(2)/M phase of the cell cycle. We show that 1) non-irradiated neonatal germ cells express gamma-H2AX with variable patterns at metaphase, 2) gamma-irradiation induces foci whose number increases in a dose-dependent manner, 3) some foci correspond to visible chromatid breaks or exchanges, 4) sticky chromosomes characterizing cell radiation exposure during mitosis are a consequence of DSBs, and 5) gamma-H2AX remains localized at the sites of the lesions even after end-joining has taken place. This suggests that completion of DSB repair does not necessarily imply disappearance of gamma-H2AX.  相似文献   

8.
Loucas, B. D. and Cornforth, M. N. Complex Chromosome Exchanges Induced by Gamma Rays in Human Lymphocytes: An mFISH Study. Radiat. Res. 155, 660-671 (2001). Combinatorial multi-fluor fluorescence in situ hybridization (mFISH) allows the simultaneous painting of each pair of homologous chromosomes, thereby eliminating many of the difficulties previously associated with the analysis of complex rearrangements. We employed mFISH to visualize exchanges in human lymphocytes and found significant frequencies of these aberrations after gamma-ray doses of 2 and 4 Gy. At 4 Gy, roughly half of the cells contained at least one complex exchange that required anywhere from 3 to 11 initial chromosome breaks. At this dose, more than 40% of gross cytogenetic damage, as measured by the total number of exchange breakpoints, was complex in origin. Both simple and complex exchanges were found to have nonlinear dose responses, although the latter showed significantly more upward curvature. In many cases, it could be deduced that the initial breaks leading to a particular complex exchange were proximate, meaning that the resulting broken chromosome ends all must have been capable of interacting freely during the exchange process. For other complex exchanges, the rearrangement could just as well have resulted from two or more simpler exchanges that occurred sequentially. The results demonstrate the utility of mFISH in visualizing intricacies of the exchange process, but also highlight the various sources of ambiguity concerning cytogenetic analysis that remain despite the power of this approach.  相似文献   

9.
Mammalian cells can choose either nonhomologous end joining (NHEJ) or homologous recombination (HR) for repair of chromosome breaks. Of these two pathways, HR alone requires extensive DNA synthesis and thus abundant synthesis precursors (dNTPs). We address here if this differing requirement for dNTPs helps determine how cells choose a repair pathway. Cellular dNTP pools are regulated primarily by changes in ribonucleotide reductase activity. We show that an inhibitor of ribonucleotide reductase (hydroxyurea) hypersensitizes NHEJ-deficient cells, but not wild type or HR-deficient cells, to chromosome breaks introduced by ionizing radiation. Hydroxyurea additionally reduces the frequency of irradiated cells with a marker for an early step in HR, Rad51 foci, consistent with reduced initiation of HR under these conditions. Conversely, promotion of ribonucleotide reductase activity protects NHEJ-deficient cells from ionizing radiation. Importantly, promotion of ribonucleotide reductase activity also increases usage of HR in cells proficient in both NHEJ and HR at a targeted chromosome break. Activity of ribonucleotide reductase is thus an important factor in determining how mammalian cells repair broken chromosomes. This may explain in part why G1/G0 cells, which have reduced ribonucleotide reductase activity, rely more on NHEJ for DSB repair.  相似文献   

10.
Deletion of genes for proteins involved in histone H4 acetylation produces sensitivity to DNA-damaging agents in both Saccharomyces cerevisiae and mammalian cells. In the present studies, we show that treating wild-type yeast cells with histone acetyl transferase (HAT) inhibitors, which are chemicals that cause a global decrease in histone H4 acetylation, sensitizes the cells to ionizing radiation. Using HAT inhibitors, we have placed histone H4 acetylation into the RAD51-mediated homologous recombination repair pathway. We further show that yeast cells with functionally defective HAT proteins have normal phospho-H2A (gamma-H2A) induction after irradiation but a reduced rate of loss of gamma-H2A. This argues that HAT-defective cells are able to detect DNA double-strand breaks normally but have a defect in the repair of these lesions. We also show that cells treated with HAT inhibitors have intact G1 and G2 checkpoints after exposure to ionizing radiation, suggesting that G1 and G2 checkpoint activation is independent of histone H4 acetylation.  相似文献   

11.
Chinese hamster ovary (CHO) cells were treated with ultraviolet radiation or the alkylating agents, nitrogen mustard or trenimon, and chromosome damage to G2 phase cells were scored by the premature chromosome condensation (PCC) method or the metotic chromosome method. Treatment with these agents produced gaps but not chromatid breaks or exchanges. After UV treatment, the gap frequency observed in G2-PCC was higher than in the mitotic chromosomes, while the reverse trend was observed after treatment with nitrogen mustard or trenimon. These results suggest that two types of chromosome gaps exist, both of which are observable in mitotic chromosomes while only one type is observable in PCC due to differences in the stages of condensation between PCC and mitotic chromosomes.  相似文献   

12.
DNA Damage and Repair in Eukaryotic Cells   总被引:3,自引:0,他引:3       下载免费PDF全文
R. B. Painter 《Genetics》1974,78(1):139-148
DAMAGE IN DNA AFTER IRRADIATION CAN BE CLASSIFIED INTO FIVE KINDS: base damage, single-strand breaks, double-strand breaks, DNA-DNA cross-linking, and DNA-protein cross-linking. Of these, repair of base damage is the best understood. In eukaryotes, at least three repair systems are known that can deal with base damage: photoreactivation, excision repair, and post-replication repair. Photoreactivation is specific for UV-induced damage and occurs widely throughout the biosphere, although it seems to be absent from placental mammals. Excision repair is present in prokaryotes and in animals but does not seem to be present in plants. Post-replication repair is poorly understood. Recent reports indicate that growing points in mammalian DNA simply skip past UV-induced lesions, leaving gaps in newly made DNA that are subsequently filled in by de novo synthesis. Evidence that this concept is oversimplified or incorrect is presented.-Single-strand breaks are induced by ionizing radiation but most cells can rapidly repair most or all of them, even after supralethal doses. The chemistry of the fragments formed when breaks are induced by ionizing radiation is complex and poorly understood. Therefore, the intermediate steps in the repair of single-strand breaks are unknown. Double-strand breaks and the two kinds of cross-linking have been studied very little and almost nothing is known about their mechanisms for repair.-The role of mammalian DNA repair in mutations is not known. Although there is evidence that defective repair can lead to cancer and/or premature aging in humans, the relationship between the molecular defects and the diseased state remains obscure.  相似文献   

13.
It is well known that Fanconi anemia (FA) patients show a hypersensitivity to the effect of cross-linking agents such as mitomycin C (MMC) and diepoxybutane (DEB), while the sensitivity of these patients to ionizing radiation is still controversial. Fanconi anemia heterozygotes do not show a hypersensitivity to the above mentioned agents compared to normal individuals. To examine the radio-sensitivity of Fanconi anemia patients and heterozygotes, ten patients and 13 heterozygotes were enrolled in this study. Standard metaphase analysis for detection and verification of radio-sensitivity was used to establish the relationship between gamma-ray and chromosome breakages in these groups. Statistical analysis was used for the assessment of aberrations including chromatid and chromosome breaks and exchanges. Results of chromosome aberration yield that: (i) differentiation between obligate carriers and the control group after MMC treatment and gamma irradiation was not possible; (ii) homozygotes were clearly distinguishable from heterozygotes and controls after MMC treatment; (iii) FA patients don't show hypersensitivity to gamma irradiation compared to normal controls and heterozygous carriers.  相似文献   

14.
Speculation has long surrounded the question of whether past exposure to ionizing radiation leaves a unique permanent signature in the genome. Intrachromosomal rearrangements or deletions are produced much more efficiently by densely ionizing radiation than by chemical mutagens, x-rays, or endogenous aging processes. Until recently, such stable intrachromosomal aberrations have been very hard to detect, but a new chromosome band painting technique has made their detection practical. We report the detection and quantification of stable intrachromosomal aberrations in lymphocytes of healthy former nuclear-weapons workers who were exposed to plutonium many years ago. Even many years after occupational exposure, more than half the blood cells of the healthy plutonium workers contain large (>6 Mb) intrachromosomal rearrangements. The yield of these aberrations was highly correlated with plutonium dose to the bone marrow. The control groups contained very few such intrachromosomal aberrations. Quantification of this large-scale chromosomal damage in human populations exposed many years earlier will lead to new insights into the mechanisms and risks of cytogenetic damage.  相似文献   

15.
Savage JR 《Mutation research》2002,512(2-3):93-109
The application of FISH chromosome painting techniques, especially the recent mFISH (and its equivalents) where all 23 human chromosome pairs can be distinguished, has demonstrated that many chromosome-type structural exchanges are much more complicated (involving more "break-rejoins" and arms) than has hitherto been assumed. It is clear that we have been greatly under-estimating the damage produced in chromatin by such agents as ionising radiation. This article gives a brief historical summary of observations leading up to this conclusion, and after outlining some of the problems surrounding the formation of complex chromosomes exchanges, speculates about possible solutions currently being proposed.  相似文献   

16.
We investigated the earliest possible chromosome break and repair process in normal human fibroblasts irradiated with low and high LET (linear energy transfer) heavy ion radiation using the modified premature chromosome condensation (PCC) technique utilizing wortmannin (WM) during the fusion incubation period [M. Okada, S. Saito, R. Okayasu, Facilitated detection of chromosome break and repair at low levels of ionizing radiation by addition of wortmannin to G1-type PCC fusion incubation, Mutat. Res., 562 (2004) 11-17]. The initial numbers of breaks were approximately 10/cell/Gy in X-irradiated samples, followed by carbon (LET: 70 keV/microm), neon, and the number was around 5/cell/Gy in silicon (LET: 70 and 200 keV/microm) and iron (LET: 200 keV/microm) samples. If WM was not used, the initial numbers of breaks with silicon and iron were higher than those of X-rays. To quantify these data, we used initial repair ratio (IRR) defined as the number of G1 PCC breaks with WM divided by the number of breaks without WM. X-irradiation gave the maximum IRR ( approximately 2.0), while iron as well as silicon irradiation showed the minimum IRR ( approximately 1.0), suggesting almost no rejoining at the initial stage. Although there is a comparatively good correlation between the IRR value and the cell survival, the survival fraction with the repair data at 2 or 6h correlates better statistically. Our data indicate that high LET heavy ion irradiation induces a lower number of initial chromosome breaks with minimal repair when compared with low LET irradiation. These results at the chromosome level substantiate and extend the notion that high LET radiation produces complex-type DNA double strand breaks (DSBs).  相似文献   

17.
Ionizing radiation can lead to DNA double-strand breaks (DSBs) which belong to the most dangerous forms of damage to the DNA. Cells possess elaborate repair mechanisms and react in a complex manner to the emergence of DSBs. Experiments have shown that gene expression levels in irradiated cells are changed, and thousands of radiation-responsive genes have been identified. On the other hand, recent studies have shown that gene expression is tightly connected to the three-dimensional organization of the genome. In this work, we analyzed the chromatin organization in the cell nuclei before and after exposure to ionizing radiation with an expression-dependent folding model. Our results indicate that the alteration of the chromosome organization on the scale of a complete chromosome is rather limited despite the expression level change of a large number of genes. We further modelled breaks within sub-compartments of the model chromosomes and showed that entropic changes caused by a break lead to increased mobility of the break sites and help to locate break ends further to the periphery of the sub-compartments. We conclude that the changes in the chromatin structure after irradiation are limited to local scales and demonstrate the importance of entropy for the behaviour of break ends.  相似文献   

18.
Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.  相似文献   

19.
Cytogenetic and survival adaptive responses in G1 phase human lymphocytes.   总被引:2,自引:0,他引:2  
Human lymphocytes from six donors were treated with 5 cGy of X-rays followed by 200 or 400 cGy in the first G1 phase after PHA stimulation, and assayed for cytogenetic aberrations and cell survival. Four donors showed cytogenetic adaptive responses with 400 cGy, and one with both 200 cGy and 400 cGy. Both exchanges and deletions were reduced, indicating that the cytogenetic adaptive response acts by restitution of chromosome breaks. Good correlations were found between nonaberrant cells and survival, although the former were often higher than the later, especially with the 400 cGy dose. In four of six donors, 5 cGy alone had significant effects on cell survival; however, this was independent of the 5 cGy effect on high-dose-induced responses. Two donors had survival adaptive responses with 5 + 200 cGy, while none were found with the 5 + 400 cGy treatment. The comparisons between the cytogenetic and survival responses suggests that a survival adaptive response will only be seen with a sufficient increase in nonaberrant cells. To date, adaptive responses to ionizing radiation have been reported to occur in G0, G1 and late S/early G2 human lymphocytes.  相似文献   

20.
Potentially lethal damage (PLD) and its repair were studied in confluent human fibroblasts by analyzing the kinetics of chromosome break rejoining and misrejoining in irradiated cells that were either held in noncycling G(0) phase or allowed to enter G(1) phase of the cell cycle immediately after 6 Gy irradiation. Virally mediated premature chromosome condensation (PCC) methods were combined with fluorescence in situ hybridization (FISH) to study chromosomal aberrations in interphase. Flow cytometry revealed that the vast majority of cells had not yet entered S phase 15 h after release from G(0). By this time some 95% of initially produced prematurely condensed chromosome breaks had rejoined, indicating that most repair processes occurred during G(1). The rejoining kinetics of prematurely condensed chromosome breaks was similar for each culture condition. However, under noncycling conditions misrepair peaked at 0.55 exchanges per cell, while under cycling conditions (G(1)) it peaked at 1.1 exchanges per cell. At 12 h postirradiation, complex-type exchanges were sevenfold more abundant for cycling cells (G(1)) than for noncycling cells (G(0)). Since most repair in G(0)/G(1) occurs via the non-homologous end-joining (NHEJ) process, increased PLD repair may result from improved cell cycle-specific rejoining fidelity of the NHEJ pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号