首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
The five urea cycle enzymes were studied in desactivated extracts of rat liver. After reduction by dithiothreitol (DTT) and in presence of Mg2+ ions, thioredoxines isolated from rat liver were able to activate carbamyl phosphate synthetase-I (CPS-I) and argininosuccinate synthetase (ASS) respectively by 468% and by 370%. Thioredoxines were purified from adult rat liver and an antiserum was raised to these proteins. After immunologic quantitation, their level in adult rat was 0.103 mg/g liver.  相似文献   

2.
Using either human placental microsomal 5-deiodinase as enzyme (5-DI) and thyroxine as substrate or rat liver (RL) microsomal 5'-deiodinase (5'DI) as enzyme and reverse [(3'- or 5'-)-125I]triiodo-L-thyronine ([125I]rT3) as substrate, activation of 5'-DI in the presence of NADPH was observed using either human placental or rat liver cytosolic components, but there was no activation of 5-DI. Both could be activated by DTT, with higher concentrations being required for 5-DI than for 5'-DI. Iopanoic acid, dicumarol, and sodium arsenite inhibited 5'-DI and 5-DI activated by DTT. In the presence of DTT, 1 mM 6-propyl-2-thiouracil had no effect on 5-DI but inhibited 5'DI. Thus, human placental and rat liver cytosolic components are interchangeable in activating hepatic 5'-DI in the presence of NADPH. However, if an endogenous cofactor system involved in the activation of human placental 5-DI exists, it probably differs from the activator of liver 5'-DI.  相似文献   

3.
Carbamyl phosphate synthetase-I (CPS-I; EC 6.3.4.16), a mitochondrial enzyme of the urea-cycle, was studied in deactivated extracts of rat liver. It has been found to be activated in vitro by dithiothreitol (DTT) and Mg2+ ions. After reduction by DTT, thioredoxins, isolated from rat liver, were able to activate CPS-I by 468%.  相似文献   

4.
The activating mechanism of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase in the plasma membranes of rat liver was investigated. (Ca2+–Mg2+)-ATPase activity was markedly increased by a sulfhydryl (SH) group protecting reagent dithiothreitol (DTT; 2.5 and 5 mM as a final concentration), while the enzyme activity was significantly decreased by a SH group modifying reagent N-ethylmaleimide (NEM; 0.5–5 mM). The effect of DTT (5 mM) to increase the enzyme activity was clearly blocked by NEM (5 mM). Regucalcin (0.25–1.0 M) significantly increased (Ca2+-Mg2+)-ATPase activity. This increase was completely blocked by NEM (5 mM). Meanwhile, digitonin (0.04%), which can solubilize the membranous lipids, significantly decreased (Ca2+–Mg2+)-ATPase activity. Digitonin did not have an effect on the DTT (5 mM)-increased enzyme activity. However, the effect of regucalcin (0.25 M) increasing (Ca2+–Mg2+)-ATPase activity was entirely blocked by the presence of digitonin. The present results suggest that regucalcin activates (Ca2+–Mg2+)-ATPase by the binding to liver plasma membrane lipids, and that the activation is involved in the SH groups which are an active site of the enzyme.  相似文献   

5.
There is little difference in the extent of inactivation of beef liver microsomal vitamin K1 epoxide reductase by N-ethylmaleimide (NEM) whether or not the microsomes are pre-treated with dithiothreitol (DTT). The rat liver microsomal enzyme, however, is inactivated by NEM to a much greater extent if the microsomes are pre-treated with DTT. The beef liver enzyme activity is protected from NEM inactivation by the substrate, vitamin K1 epoxide. Ping-pong kinetics are exhibited by the beef liver enzyme. These results support a mechanism for vitamin K1 epoxide reductase in which the function of the required dithiol is to reduce an active site disulfide bond; however, the geometry of the active sites of the enzyme from rat and beef may be different.  相似文献   

6.
1. 3 alpha-Hydroxysteroid dehydrogenase was purified to homogeneity from bovine cytosolic fraction, which was monomeric and its molecular weight was estimated to be about 35 kDa. 2. The enzyme had ability to catalyze NADP(H)-dependent oxidoreduction of position 3 alpha-hydroxy and keto group of steroids and also could catalyze the reduction of some ketones and quinones. 3. In addition, benzenedihydrodiol was one of the substrates of dehydrogenase activity with NADP+. 4. Indomethacin, synthetic steroids and SH-reagents were potent inhibitors for this enzyme. 5. Inactivation of the enzyme by GSSG-treatment was restored to its original activity by the addition of DTT. 6. The presence of coenzyme, 0.33 mM NADP+, completely protected from the DTNB-inactivation. 7. Bovine liver cytosolic enzyme immunologically crossreacted with rat liver 3 alpha-hydroxysteroid dehydrogenase.  相似文献   

7.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

8.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver microsomes was investigated. The presence of regucalcin (0.1-1.0 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the microsomes. Thapsigargin (10(-6) M), a specific inhibitor of microsomal Ca(2+) pump enzyme (Ca(2+)-ATPase), clearly inhibited regucalcin (0.5 microM)-increased microsomal Ca(2+)-ATPase activity. Liver microsomal Ca(2+)-ATPase activity was markedly decreased by N-ethylmaleimide (NEM; 2.5 mM), while the activity was clearly elevated by dithiothreitol (DTT; 2.5 mM), indicating that the sulfhydryl (SH) group of the enzyme is an active site. The effect of regucalcin (0.5 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of NEM (2.5 mM) or digitonin (10(-2) %), a solubilizing reagent of membranous lipids. Moreover, the effect of regucalcin on enzyme activity was seen in the presence of Ca(2+) ionophore (A23187; 10(-7) M). The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver microsomes, and that the protein may act the SH groups of microsomal Ca(2+)-ATPase.  相似文献   

9.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine, the major methyl donor for transmethylation reactions. Attempts to perform structural studies using rat liver MAT have met with problems because the protein purified from cellular extracts is heterogeneous. Overexpression of the enzyme in Escherichia coli rendered most of the protein as inclusion bodies. These aggregates were purified by specific washes using urea and Triton X-100 and used for refolding. Maximal activity was obtained when chaotropic solubilization included the structural cation Mg(2+), the protein concentration was kept below 0.1 mg/ml, and denaturant removal was carried out in a two-step process, namely, a fast dilution followed by dialysis in the presence of 10 mM DTT or GSH/GSSG redox buffers. Refolding by this procedure generated the oligomeric forms, MAT I and III, which were basically indistinguishable from the purified rat liver forms in secondary structure and catalytic properties.  相似文献   

10.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

11.
Messenger RNA coding for argininosuccinate synthetase (ASS), extracted from the livers of some patients with citrullinemia, was analyzed using a cell-free translation system and dot and Northern blot hybridization with cDNA probe for ASS. In patients with quantitative-type citrullinemia, called type II here, previous studies have demonstrated that the hepatic content of the enzyme was about 10% of the control value, whereas the translatable mRNA level for the enzyme was similar to that of control livers. Here, we confirmed that the type II liver contained an almost normal amount of mRNA coding for ASS, judged by the dot-blot hybridization technique with cDNA. Northern blot hybridization of RNA indicated that there was hybridizable mRNA of approximately normal size (about 1.7 kilobase [kb]) in each, suggesting that large structural gene deletions had not occurred. These results indicate that in type II citrullinemia, the decrease in the enzyme protein is due either to increased degradation of the enzyme or to decreased or inhibited translation in the liver. Another type of citrullinemia was found and classified as type III. It is characterized by no detectable enzyme activity for ASS or translation activity for ASS mRNA. However, a smaller amount of RNA molecule hybridized for ASS cDNA was detected.  相似文献   

12.
Human blood platelets were disrupted by ultrasonication, and the guanylate cyclase activity was determined in the 105,000 g supernatant. The guanylate cyclase preparation obtained in the absence of dithiothreitol (DTT) was characterized by a nonlinear dynamics of cGMP synthesis during incubation at 37 degrees C. The use of 0.2 mM DTT during platelet ultrasonication stabilized the guanylate cyclase reaction and did not influence the enzyme activity. With a rise in DTT concentration up to 2 mM the guanylate cyclase activity diminished. Sodium nitroprusside stimulated the enzyme; this effect was enhanced in the presence of DTT. The maximum guanylate cyclase activity was revealed at 4 mM Mn2+ or Mg2+ and with 1 mM GTP. In the presence of Mn2+ the enzyme activity was higher than with Mg2+. The apparent Km values for GTP in the presence of 4 mM Mn2+ and Mg2+ was 30 and 200 microM, respectively. At GTP/cation ratio of 1:4 the Km values for Mn2+ and Mg2+ were nearly the same (249 and 208 microM, respectively). It was assumed that besides being involved in the formation of the GTP-substrate complex, Mn2+ exerts a strong influence on guanylate cyclase by oxidizing the SH-groups of the enzyme.  相似文献   

13.
1. The transfer of sulfate ester group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to poly-(Glu6, Ala3, Tyr1) (EAY; Mr 47 kDa) in rat submandibular salivary gland has been investigated. The highest tyrosylprotein sulfotransferase activity was obtained in the Golgi-enriched fraction in the presence of 2 mM 5'AMP, 20 mM MnCl2 and 50 mM NaF at pH 6.2. 2. The apparent Km values for EAY and PAPS were 1.6 x 10(-6) and 1.9 x 10(-6) M, respectively. 3. Inclusion of NaCl, EDTA, NEM and DTT was inhibitory for the enzyme activity. The enzyme was 28 times less susceptible to 2,6-dichloro-4-nitrophenol inhibition than to phenol sulfotransferase inhibition. 4. This study is the first report characterizing a sulfotransferase activity specific for tyrosylprotein in rat submandibular salivary glands.  相似文献   

14.
1. The higher relative molecular mass (M(r)) forms of larval honeybee haemolymph alpha-glucosidases are dissociated by dithiothreitol (DTT) into lower M(r) electrophoretic forms, without any important loss of activity. 2. The maximum velocity remains unchanged and the apparent dissociation constant is slightly increased, with Ki approximately equal to 247 mM and I50 approximately equal to 730 mM. 3. By contrast, the major changes affect the Hill coefficient which decreases from 1.0 in controls to 0.7 in presence of 600 mM DTT. 4. In the absence of both DTT and substrate, the major native enzyme form, isolated by gel filtration, spontaneously rearranges to give three additional minor forms, one of lower M(r) and two of higher M(r). 5. These data are consistent with the hypothesis of substrate-directed aggregation of enzyme protomers into functional complexes.  相似文献   

15.
The kinetic properties of glucokinase (GLK) from the liver of active and hibernating ground squirrels Spermophilus undulatus have been studied. Entrance of ground squirrels into hibernation from their active state is accompanied by a sharp decrease in blood glucose (Glc) level (from 14 to 2.9 mM) and with a significant (7-fold) decrease of GLK activity in the liver cytoplasm. Preparations of native GLK practically devoid of other molecular forms of hexokinase were obtained from the liver of active and hibernating ground squirrels. The dependence of GLK activity upon Glc concentration for the enzyme from active ground squirrel liver showed a pronounced sigmoid character (Hill coefficient, h = 1.70 and S 0.5 = 6.23 mM; the experiments were conducted at 25°C in the presence of enzyme stabilizers, K+ and DTT). The same dependence of enzyme activity on Glc concentration was found for GLK from rat liver. However, on decreasing the temperature to 2°C (simulation of hibernation conditions), this dependency became almost hyperbolic (h = 1.16) and GLK affinity for substrate was reduced (S 0.5 = 23 mM). These parameters for hibernating ground squirrels (body temperature 5°C) at 25°C were found to be practically equal to the corresponding values obtained for GLK from the liver of active animals (h = 1.60, S 0.5 = 9.0 mM, respectively); at 2°C sigmoid character was less expressed and affinity for Glc was drastically decreased (h = 1.20, S 0.5 = 45 mM). The calculations of GLK activity in the liver of hibernating ground squirrels based on enzyme kinetic characteristics and seasonal changes in blood Glc concentrations have shown that GLK activity in the liver of hibernating ground squirrels is decreased about 5500-fold.  相似文献   

16.
The effect of cadmium (Cd(2+)) on delta-aminolevulinate dehydratase (delta-ALA-D) activity from rat lung in vitro was investigated. delta-ALA-D activity, a parameter for metal intoxication, has been reported as a target of Cd(2+) in different tissues. The protective effect of monotherapies with dithiol chelating (meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercaptopropane-1-sulfonic acid (DMPS)) or antioxidant agents (ascorbic acid, diphenyl diselenide (PhSe)(2), and N-acetylcysteine (NAC)) was evaluated. The effect of a combined therapy (dithiol chelatingxantioxidant agent) was also studied. Zinc chloride (ZnCl(2)) and dithiothreitol (DTT) were used to investigate the mechanisms involved in cadmium, chelating and antioxidant effects on delta-ALA-D activity. Cadmium inhibited rat lung delta-ALA-D activity at low concentrations. DTT (3mM), but not ZnCl(2) (100microM), protected the inhibition of enzyme activity caused by Cd(2+). Chelating agents were not effective in restoring the enzyme activity. DMPS and DMSA presented inhibitory effect on enzyme activity. DTT restored the inhibition caused by both chelating agents, but ZnCl(2) restored only the inhibitory effect induced by DMSA. These compounds caused a marked potentiation of delta-ALA-D inhibition induced by Cd(2+). ZnCl(2) did not restore inhibition of enzyme activity caused by Cd(2+) plus chelating agents. Conversely, DTT restored the inhibition induced by Cd(2+)/DMSA, but not by Cd(2+)/DMPS. Antioxidants were not effective in ameliorating delta-ALA-D inhibition induced by Cd(2+), whereas ascorbic acid potentiated the enzyme inhibition induced by this metal. A combined effect of Cd(2+)xDMPSx(PhSe)(2) and Cd(2+)xDMPSxNAC was observed. There was no combined effect of Cd(2+)xchelatorxantioxidants when DMSA was used. This study demonstrated that Cd(2+)inhibited delta-ALA-D activity and chelating and antioxidant agents, alone or combined, did not restore the enzyme activity. In contrast, these compounds potentiated the inhibition induced by Cd(2+) in rat lung.  相似文献   

17.
The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.  相似文献   

18.
19.
An unusual thioether bridge (Cys-His) has been detected at the active site of mushroom tyrosinase, and the effects of thiohydroxyl compounds such as dithiothreitol (DTT) and beta-mercaptoethanol (beta-ME) on Cu2+ at the active site have been elucidated. Treatment with DTT and beta-ME on mushroom tyrosinase completely inactivated 3,4-dihydroxyphenylalanine oxidase activity in a dose-dependent manner. Sequential kinetic studies revealed that DTT and beta-ME caused different mixed-type inhibition mechanisms: the slope-parabolic competitive inhibition (Ki = 0.143 mM) by DTT and slope-hyperbolic noncompetitive inhibition (Ki = 0.0128 mM) by beta-ME, respectively. Kinetic Scatchard analysis consistently showed that mushroom tyrosinase had multiple binding sites for DTT and beta-ME with different affinities. Reactivation study of inactivated enzyme by addition of Cu2+ confirmed that DTT and beta-ME directly bound with Cu2+ at the active site. Our results may provide useful information regarding interactions of tyrosinase inhibitor for designing an effective whitening agent targeted to the tyrosinase active site.  相似文献   

20.
Degradation of somatomedin A by various organ homogenates from rats   总被引:1,自引:0,他引:1  
Degradative activities of somatomedin A (SMA) have been examined in various tissue homogenates of rat using trichloracetic acid precipitable radioactivity of 125I-SMA. Kidney and testis showed higher specific activities and liver and brain lower activities. They were dependent on SH reagents; 0.5 mM HgCl2 inhibited the degradative activity of liver completely and 1 mM dithiothreitol (DTT) augmented the activity slightly. The activities in liver were separated by differential centrifugation; about 90 per cent of the total activity in the whole homogenate was recovered in the supernatant fraction at 100,00 x g for 60 min, and 10 per cent in the precipitate. The pH profile of each fraction was different; that of the supernatant showed a single peak at pH 7.4 and that of the pellet revealed two peaks at pH 5.9 and 7.4. However, both fractions showed similar SH-dependency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号