首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Minch K  Rustad T  Sherman DR 《PloS one》2012,7(4):e35935
The Mycobacterium tuberculosis regulator DosR is induced by multiple stimuli including hypoxia, nitric oxide and redox stress. Overlap of these stimuli with conditions thought to promote latency in infected patients fuels a model in which DosR regulon expression is correlated with bacteriostasis in vitro and a proxy for latency in vivo. Here, we find that inducing the DosR regulon to wildtype levels in aerobic, replicating M. tuberculosis does not alter bacterial growth kinetics. We conclude that DosR regulon expression alone is insufficient for bacterial latency, but rather is expressed during a range of growth states in a dynamic environment.  相似文献   

2.
Selvaraj S  Sambandam V  Sardar D  Anishetty S 《Gene》2012,506(1):233-241
One of the challenges faced by Mycobacterium tuberculosis (M. tuberculosis) in dormancy is hypoxia. DosR/DevR of M. tuberculosis is a two component dormancy survival response regulator which induces the expression of 48 genes. In this study, we have used DosR regulon proteins of M. tuberculosis H37Rv as the query set and performed a comprehensive homology search against the non-redundant database. Homologs were found in environmental mycobacteria, environmental bacteria and archaebacteria. Analysis of genomic context of DosR regulon revealed that they are distributed as nine blocks in the genome of M. tuberculosis with many transposases and integrases in their vicinity. Further, we classified DosR regulon proteins into eight functional categories. One of the hypothetical proteins Rv1998c could probably be a methylisocitrate lyase or a phosphonomutase. Another hypothetical protein, Rv0572 was found only in mycobacteria. Insights gained in this study can potentially aid in the development of novel therapeutic interventions.  相似文献   

3.
4.
The Beijing family of Mycobacterium tuberculosis strains has been associated with epidemic spread and an increased likelihood of developing drug resistance. The characteristics that predispose this family to such clinical outcomes have not been identified, although one potential candidate, the phenolic glycolipid PGL-tb, has been shown to mediate a fulminant lethal disease in mice and rabbits due to lipid-mediated immunosuppression. However, PGL-tb is not uniformly expressed throughout the Beijing lineage and may not be the only unique virulence trait associated with this family. In an attempt to define phenotypes common to all Beijing strains, we interrogated a carefully selected set of isolates representing the five extant lineages of the Beijing family. Comparison of lipid production in this set revealed that all Beijing strains accumulated large quantities of triacylglycerides in in vitro aerobic culture. This accumulation was found to be coincident with upregulation of Rv3130c, whose product was previously characterized as a triacylglyceride synthase. Rv3130c is a member of the DosR-controlled regulon of M. tuberculosis, and further examination revealed that several members of this regulon were upregulated throughout this strain family. The upregulation of the DosR regulon may confer an adaptive advantage for growth in microaerophilic or anaerobic environments encountered by the bacillus during infection and thus may be related to the epidemiological phenomena associated with this important strain lineage.  相似文献   

5.
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis. We describe functional characterization of an important gene of DosR regulon, Rv0079, which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079, possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079. Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a 'dormancy associated translation inhibitor' or DATIN.  相似文献   

6.
Several genomes of different Mycobacterium tuberculosis isolates have been completely sequenced around the world. The genomic information obtained have shown higher diversity than originally thought and specific adaptations to different human populations. Within this work, we sequenced the genome of one Colombian M.?tuberculosis virulent isolate. Genomic comparison against the reference genome of H37Rv and other strains showed multiple deletion and insertions that ranged between a few bases to thousands. Excluding PPE and PG-PGRS genes, 430 proteins present changes in at least 1 amino acid. Also, novel positions of the IS6110 mobile element were identified. This isolate is also characterized by a large genomic deletion of 3.6?kb, leading to the loss and modification of the dosR regulon genes, Rv1996 and Rv1997. To our knowledge, this is the first report of the genome sequence of a Latin American M.?tuberculosis clinical isolate.  相似文献   

7.
With 2 million deaths per year, TB remains the most significant bacterial killer. The long duration of chemotherapy and the large pool of latently infected people represent challenges in disease control. To develop drugs that effectively eradicate latent infection and shorten treatment duration, the pathophysiology of the causative agent Mycobacterium tuberculosis needs to be understood. The discovery that the tubercle bacillus can develop a drug-tolerant dormant form and the identification of the underlying genetic program 10 years ago paved the way for a deeper understanding of the life of the parasite inside human lesions and for new approaches to antimycobacterial drug discovery. Here, we summarize what we have learnt since the discovery of the master regulator of dormancy, DosR, and the key gaps in our knowledge that remain. Furthermore, we discuss a possible wider clinical relevance of DosR for 'nontuberculous mycobacteria'.  相似文献   

8.
9.
Mycobacterium tuberculosis adapts to cellular stresses such as decreased oxygen concentration, at least in part, by upregulation of the dormancy survival regulon, which is thought to be important for the bacterium's ability to enter a persistent state in its human host. We have determined the structure of hypoxic response protein 1, a protein encoded by one of the most strongly upregulated genes in the dormancy survival regulon. Hypoxic response protein 1 is an example of a ‘cystathionine-β-synthase-domain-only’ protein; however, unlike other cystathionine-β-synthase domains, it does not appear to bind AMP. The protein is proteolytically sensitive at its C-terminus and contains two unexpected disulfide bonds, one of which appears resistant to reducing agents in solution and is, therefore, most likely buried in the protein and is not solvent-accessible. We show that the protein is secreted from the bacterium in hypoxic in vitro culture and does not accumulate in the bacterial cell wall. The biological function of the protein remains unclear, but we suggest that it may contribute to the modulation of the host immune response. The work reported advances our understanding of the chemistry and cell biology of this intriguing and potentially important protein, and establishes a structural framework for future functional and immunological studies.  相似文献   

10.
The majority of the Mycobacterium tuberculosis response to hypoxia and nitric oxide is through the DosRS (DevRS) two-component regulatory system. The N-terminal input domain of the DosS sensor contains two GAF domains. We demonstrate here that the proximal GAF domain binds haem, and identified histidine 149 of DosS as critical to haem-binding; the location of this histidine residue is similar to the cGMP-binding site in a crystal structure of cyclic nucleotide phosphodiesterase 2A. GAF domains are frequently involved in binding cyclic nucleotides, but this is the first GAF domain to be identified that binds haem. In contrast, PAS domains (similar to GAF domains in structure but not primary sequence) frequently use haem cofactors, and these findings further illustrate how the functions of these domains overlap. We propose that the activation of the DosS sensor is controlled through the haem binding of molecular oxygen or nitric oxide.  相似文献   

11.
Cho HY  Cho HJ  Kim MH  Kang BS 《FEBS letters》2011,585(12):1873-1878
Two sensor kinases, DosS and DosT, are responsible for recognition of hypoxia in Mycobacterium tuberculosis. Both proteins are structurally similar to each other, but DosS is a redox sensor while DosT binds oxygen. The primary difference between the two proteins is the channel to the heme present in their GAF domains. DosS has a channel that is blocked by E87 while DosT has an open channel. Absorption spectra of DosS mutants with an open channel show that they bind oxygen as DosT does when they are exposed to air, while DosT G85E mutant is oxidized similarly to DosS without formation of an oxy-ferrous form. This suggests that oxygen accessibility to heme is the primary factor governing the oxygen-binding properties of these proteins.  相似文献   

12.
Cholesterol catabolism is widespread in actinobacteria and is critical for Mycobacterium tuberculosis (Mtb) virulence. Catabolism of steroid nucleus rings C and D is poorly understood: it is initiated by the CoA thioesterification of 3aα‐H‐4α(3′‐propanoate)‐7aβ‐methylhexahydro‐1,5‐indanedione (HIP) by FadD3, whose gene is part of the KstR2 regulon. In Mtb, genes of this regulon were upregulated up to 30‐ and 22‐fold during growth on cholesterol and HIP, respectively, versus another minimal medium. In contrast, genes involved in degrading the cholesterol side‐chain and nucleus rings A and B were only upregulated during growth on cholesterol. Similar results were obtained in Rhodococcus jostii RHA1. Moreover, the regulon was not upregulated in a ΔfadD3 mutant unable to produce HIP‐CoA. In electrophoretic mobility shift assays, HIP‐CoA relieved the binding of KstR2Mtb to each of three KstR2 boxes: CoASH, HIP and a related CoA thioester did not. Inspection of the structure of KstR2RHA1 revealed no obvious HIP‐CoA binding pocket. The results establish that Mtb can catabolize the entire cholesterol molecule and that HIP‐CoA is an effector of KstR2. They further indicate that KstR2 specifically represses the expression of the HIP degradation genes in actinobacteria, which encode a lower pathway involved in the catabolism of multiple steroids.  相似文献   

13.
14.
15.
The mechanisms that allow Mycobacterium tuberculosis (Mtb) to persist in human tissue for decades and to then abruptly cause disease are not clearly understood. Regulatory elements thought to assist Mtb to enter such a state include the heme two-component sensor kinases DosS and DosT and the cognate response regulator DosR. We have demonstrated previously that O(2), nitric oxide (NO), and carbon monoxide (CO) are regulatory ligands of DosS and DosT. Here, we show that in addition to O(2) and NO, CO induces the complete Mtb dormancy (Dos) regulon. Notably, we demonstrate that CO is primarily sensed through DosS to induce the Dos regulon, whereas DosT plays a less prominent role. We also show that Mtb infection of macrophage cells significantly increases the expression, protein levels, and enzymatic activity of heme oxygenase-1 (HO-1, the enzyme that produces CO), in an NO-independent manner. Furthermore, exploiting HO-1(+/+) and HO-1(-/-) bone marrow-derived macrophages, we demonstrate that physiologically relevant levels of CO induce the Dos regulon. Finally, we demonstrate that increased HO-1 mRNA and protein levels are produced in the lungs of Mtb-infected mice. Our data suggest that during infection, O(2), NO, and CO are being sensed concurrently rather than independently via DosS and DosT. We conclude that CO, a previously unrecognized host factor, is a physiologically relevant Mtb signal capable of inducing the Dos regulon, which introduces a new paradigm for understanding the molecular basis of Mtb persistence.  相似文献   

16.
1. Two ferredoxin-type iron-sulfur proteins have been isolated from Mycobacterium flavum 301 grown under nitrogen-fixing, iron-sufficient conditions. No flavodoxin was observed. 2. These ferredoxins are apparently soluble: they were present in the supernatant fraction after disrupting by decompression. Only small amounts were present in particulate fractions. 3. The two ferredoxins were separated by chromatography on DEAE-cellulose, Sephadex or electrophoresis. 4. Both ferredoxins mediated the transfer of electrons from illuminated spinach chloroplasts to a nitrogenase preparation to reduce acetylene. Ferredoxin II was specifically about five times more active than ferredoxin I. Ferredoxin II was also active in the photosynthetic NADP+-reduction whereas ferredoxin I was not. 5. Both ferredoxins were reversibly reduced by either sodium dithionite, illuminated spinach chloroplasts or hydrogen plus hydrogenase from Clostridium pasteurianum. 6. Attempts to determine the primary electron donor for nitrogen fixation in Mycobacterium flavum were unsuccessful. Acetylene reduction in Mycobacterium extracts was obtained only with sodium dithionite or illuminated spinach chloroplasts as electron donors. The reduction of the electron carrier (e.g. ferredoxin) rather than the transfer of electrons from the reduced carrier to nitrogenase was rate-limiting.  相似文献   

17.
18.
The response regulator DosR is essential for promoting long-term survival of Mycobacterium tuberculosis under low oxygen conditions in a dormant state and may be responsible for latent tuberculosis in one-third of the world's population. Here, we report crystal structures of full-length unphosphorylated DosR at 2.2 Å resolution and its C-terminal DNA-binding domain at 1.7 Å resolution. The full-length DosR structure reveals several features never seen before in other response regulators. The N-terminal domain of the full-length DosR structure has an unexpected (βα)4 topology instead of the canonical (βα)5 fold observed in other response regulators. The linker region adopts a unique conformation that contains two helices forming a four-helix bundle with two helices from another subunit, resulting in dimer formation. The C-terminal domain in the full-length DosR structure displays a novel location of helix α10, which allows Gln199 to interact with the catalytic Asp54 residue of the N-terminal domain. In contrast, the structure of the DosR C-terminal domain alone displays a remarkable unstructured conformation for helix α10 residues, different from the well-defined helical conformations in all other known structures, indicating considerable flexibility within the C-terminal domain. Our structures suggest a mode of DosR activation by phosphorylation via a helix rearrangement mechanism.  相似文献   

19.
20.
The mechanisms responsible for activation of the MtrAB two-component regulatory signal transduction system, which includes sensor kinase MtrB and response regulator MtrA, are unknown. Here, we show that an MtrB-GFP fusion protein localized to the cell membrane, the septa, and the poles in Mycobacterium tuberculosis and Mycobacterium smegmatis. This localization was independent of MtrB phosphorylation status but dependent upon the assembly of FtsZ, the initiator of cell division. The M. smegmatis mtrB mutant was filamentous, defective for cell division, and contained lysozyme-sensitive cell walls. The mtrB phenotype was complemented by either production of MtrB protein competent for phosphorylation or overproduction of MtrA(Y102C) and MtrA(D13A) mutant proteins exhibiting altered phosphorylation potential, indicating that either MtrB phosphorylation or MtrB independent expression of MtrA regulon genes, including those involved in cell wall processing, are necessary for regulated cell division. In partial support of this observation, we found that the essential cell wall hydrolase ripA is an MtrA target and that the expression of bona fide MtrA targets ripA, fbpB, and dnaA were compromised in the mtrB mutant and partially rescued upon MtrA(Y102C) and MtrA(D13A) overproduction. MtrB septal assembly was compromised upon FtsZ depletion and exposure of cells to mitomycin C, a DNA damaging agent, which interferes with FtsZ ring assembly. Expression of MtrA targets was also compromised under the above conditions, indicating that MtrB septal localization and MtrA regulon expression are linked. We propose that MtrB septal association is a necessary feature of MtrB activation that promotes MtrA phosphorylation and MtrA regulon expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号