首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex   总被引:1,自引:0,他引:1  
The cbb3-type cytochrome c oxidases as members of the heme-copper oxidase superfamily are involved in microaerobic respiration in both pathogenic and non-pathogenic proteobacteria. The biogenesis of these multisubunit enzymes, encoded by the ccoNOQP operon, depends on the ccoGHIS gene products, which are proposed to be specifically required for co-factor insertion and maturation of cbb3-type cytochrome c oxidases. Here, the assembly of the cbb3-type cytochrome c oxidase from the facultative photosynthetic model organism Rhodobacter capsulatus was investigated using blue-native polyacrylamide gel electrophoresis. This process involves the formation of a stable but inactive 210 kDa sub-complex consisting of the subunits CcoNOQ and the assembly proteins CcoH and CcoS. By recruiting monomeric CcoP, this sub-complex is converted into an active 230 kDa CcoNOQP complex. Formation of these complexes and the stability of the monomeric CcoP are impaired drastically upon deletion of ccoGHIS. In a ccoI deletion strain, the 230 kDa complex was absent, although monomeric CcoP was still detectable. In contrast, neither of the complexes nor the monomeric CcoP was found in a ccoH deletion strain. In the absence of CcoS, the 230 kDa complex was assembled. However, it exhibited no enzymatic activity, suggesting that CcoS might be involved in a late step of biogenesis. Based on these data, we propose that CcoN, CcoO and CcoQ assemble first into an inactive 210 kDa sub-complex, which is stabilized via its interactions with CcoH and CcoS. Binding of CcoP, and probably subsequent dissociation of CcoH and CcoS, then generates the active 230 kDa complex. The insertion of the heme cofactors into the c-type cytochromes CcoP and CcoO precedes sub-complex formation, while the cofactor insertion into CcoN could occur either before or after the 210 kDa sub-complex formation during the assembly of the cbb3-type cytochrome c oxidase.  相似文献   

2.
3.
The cbb(3)-type cytochrome c oxidases (cbb(3)-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa(3)-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb(3)-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b(3)-Cu(B) center, have to be coordinated precisely both temporally and spatially to yield a functional cbb(3)-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb(3)-Cox, and provide a highly tentative model for cbb(3)-Cox assembly and formation of its heme b(3)-Cu(B) binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

4.
Cytochrome cbb(3) oxidase, a member of the heme-copper oxidase superfamily, is characterized by its high affinity for oxygen while retaining the ability to pump protons. These attributes are central to its proposed role in the microaerobic metabolism of proteobacteria. We have completed the first detailed spectroscopic characterization of a cytochrome cbb(3) oxidase, the enzyme purified from Pseudomonas stutzeri. A combination of UV-visible and magnetic CD spectroscopies clearly identified four low-spin hemes and the high-spin heme of the active site. This heme complement is in good agreement with our analysis of the primary sequence of the ccoNOPQ operon and biochemical analysis of the complex. Near-IR magnetic CD spectroscopy revealed the unexpected presence of a low-spin bishistidine-coordinated c-type heme in the complex. This was shown to be one of two c-type hemes in the CcoP subunit by separately expressing the subunit in Escherichia coli. Separate expression of CcoP also allowed us to unambiguously assign each of the signals associated with low-spin ferric hemes present in the X-band EPR spectrum of the oxidized enzyme. This work both underpins future mechanistic studies on this distinctive class of bacterial oxidases and raises questions concerning the role of CcoP in electron delivery to the catalytic subunit.  相似文献   

5.
The cbb(3) cytochrome c oxidase of Rhodobacter sphaeroides consists of four nonidentical subunits. Three subunits (CcoN, CcoO, and CcoP) comprise the catalytic "core" complex required for the reduction of O(2) and the oxidation of a c-type cytochrome. On the other hand, the functional role of subunit IV (CcoQ) of the cbb(3) oxidase was not obvious, although we previously suggested that it is involved in the signal transduction pathway controlling photosynthesis gene expression (Oh, J. I., and Kaplan, S. (1999) Biochemistry 38, 2688-2696). Here we go on to demonstrate that subunit IV protects the core complex, in the presence of O(2), from proteolytic degradation by a serine metalloprotease. In the absence of CcoQ, we suggest that the presence of O(2) leads to the loss of heme from the core complex, which destabilizes the cbb(3) oxidase into a "degradable" form, perhaps by altering its conformation. Under aerobic conditions the absence of CcoQ appears to affect the CcoP subunit most severely. It was further demonstrated, using a series of COOH-terminal deletion derivatives of CcoQ, that the minimum length of CcoQ required for stabilization of the core complex under aerobic conditions is the amino-terminal approximately 48-50 amino acids.  相似文献   

6.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

7.
A survey of genomes for the presence of gene clusters related to cbb(3) oxidases detected bona fide members of the family in almost all phyla of the domain Bacteria. No archaeal representatives were found. The subunit composition was seen to vary substantially between clades observed on the phylogenetic tree of the catalytic subunit CcoN. The protein diade formed by CcoN and the monoheme cytochrome CcoO appears to constitute the functionally essential "core" of the enzyme conserved in all sampled cbb(3) gene clusters. The topology of the phylogenetic tree contradicts the scenario of a recent origin of cbb(3) oxidases and substantiates the status of this family as a phylogenetic entity on the same level as the other subgroups of the heme-copper superfamily (including nitric oxide reductase). This finding resuscitates and exacerbates the conundrum of the evolutionary origin of heme-copper oxidases.  相似文献   

8.
In many bacteria the ccoGHIS cluster, located immediately downstream of the structural genes (ccoNOQP) of cytochrome cbb(3) oxidase, is required for the biogenesis of this enzyme. Genetic analysis of ccoGHIS in Rhodobacter capsulatus demonstrated that ccoG, ccoH, ccoI and ccoS are expressed independently of each other, and do not form a simple operon. Absence of CcoG, which has putative (4Fe-4S) cluster binding motifs, does not significantly affect cytochrome cbb(3) oxidase activity. However, CcoH and CcoI are required for normal steady-state amounts of the enzyme. CcoI is highly homologous to ATP-dependent metal ion transporters, and appears to be involved in the acquisition of copper for cytochrome cbb(3) oxidase, since a CcoI-minus phenotype could be mimicked by copper ion starvation of a wild-type strain. Remarkably, the small protein CcoS, with a putative single transmembrane span, is essential for the incorporation of the redox-active prosthetic groups (heme b, heme b(3 )and Cu) into the cytochrome cbb(3) oxidase. Thus, the ccoGHIS products are involved in several steps during the maturation of the cytochrome cbb(3) oxidase.  相似文献   

9.
Pitcher RS  Brittain T  Watmough NJ 《Biochemistry》2003,42(38):11263-11271
Cytochrome cbb(3) oxidase, from Pseudomonas stutzeri, contains a total of five hemes, two of which, a b-type heme in the active site and a hexacoordinate c-type heme, can bind CO in the reduced state. By comparing the cbb(3) oxidase complex and the isolated CcoP subunit, which contains the ligand binding bishistidine-coordinated c-type heme, we have deconvoluted the contribution made by each center to CO binding. A combination of rapid mixing and flash photolysis experiments, coupled with computer simulations, reveals the kinetics of the reaction of c-type heme with CO to be complex as a result of the need to displace an endogenous axial ligand, a property shared with nonsymbiotic plant hemoglobins and some heme-based gas sensing domains. The recombination of CO with heme b(3), unlike all other heme-copper oxidases, including mitochondrial cytochrome c oxidase, is independent of ligand concentration. This observation suggests a very differently organized dinuclear center in which CO exchange between Cu(B) and heme b(3) is significantly enhanced, perhaps reflecting an important determinant of substrate affinity.  相似文献   

10.
Cytochrome cbb3-type oxidases are members of the heme copper oxidase superfamily and are composed of four subunits. CcoN contains the heme b-CuB binuclear center where oxygen is reduced, while CcoP and CcoO are membrane-bound c-type cytochromes thought to channel electrons from the donor cytochrome into the binuclear center. Like many other bacterial members of this superfamily, the cytochrome cbb3-type oxidase contains a fourth, non-cofactor-containing subunit, which is termed CcoQ. In the present study, we analyzed the role of CcoQ on the stability and activity of Rhodobacter capsulatus cbb3-type oxidase. Our data showed that CcoQ is a single-spanning membrane protein with a Nout-Cin topology. In the absence of CcoQ, cbb3-type oxidase activity is significantly reduced, irrespective of the growth conditions. Blue native polyacrylamide gel electrophoresis analyses revealed that the lack of CcoQ specifically impaired the stable recruitment of CcoP into the cbb3-type oxidase complex. This suggested a specific CcoQ-CcoP interaction, which was confirmed by chemical cross-linking. Collectively, our data demonstrated that in R. capsulatus CcoQ was required for optimal cbb3-type oxidase activity because it stabilized the interaction of CcoP with the CcoNO core complex, leading subsequently to the formation of the active 230-kDa cbb3-type oxidase complex.  相似文献   

11.
Mutations in the three largest subunits of yeast RNA polymerase II (RPB1, RPB2, and RPB3) were investigated for their effects on RNA polymerase II structure and assembly. Among 23 temperature-sensitive mutations, 6 mutations affected enzyme assembly, as assayed by immunoprecipitation of epitope-tagged subunits. In all six assembly mutants, RNA polymerase II subunits synthesized at the permissive temperature were incorporated into stably assembled, immunoprecipitable enzyme and remained stably associated when cells were shifted to the nonpermissive temperature, whereas subunits synthesized at the nonpermissive temperature were not incorporated into a completely assembled enzyme. The observation that subunit subcomplexes accumulated in assembly-mutant cells at the nonpermissive temperature led us to investigate whether these subcomplexes were assembly intermediates or merely byproducts of mutant enzyme instability. The time course of assembly of RPB1, RPB2, and RPB3 was investigated in wild-type cells and subsequently in mutant cells. Glycerol gradient fractionation of extracts of cells pulse-labeled for various times revealed that a subcomplex of RPB2 and RPB3 appears soon after subunit synthesis and can be chased into fully assembled enzyme. The RPB2-plus-RPB3 subcomplexes accumulated in all RPB1 assembly mutants at the nonpermissive temperature but not in an RPB2 or RPB3 assembly mutant. These data indicate that RPB2 and RPB3 form a complex that subsequently interacts with RPB1 during the assembly of RNA polymerase II.  相似文献   

12.
In the respiratory chains of mitochondria and many aerobic prokaryotes, heme-copper oxidases are the terminal enzymes that couple the reduction of molecular oxygen to proton pumping, contributing to the protonmotive force. The cbb(3) oxidases belong to the superfamily of enzymes that includes all of the heme-copper oxidases. Sequence analysis indicates that the cbb(3) oxidases are missing an active-site tyrosine residue that is absolutely conserved in all other known heme-copper oxidases. In the other heme-copper oxidases, this tyrosine is known to be subject to an unusual post-translational modification and to play a critical role in the catalytic mechanism. The absence of this tyrosine in the cbb(3) oxidases raises the possibility that the cbb(3) oxidases utilize a different catalytic mechanism from that of the other members of the superfamily. Using homology modeling, quantum chemistry, and molecular dynamics, a model of the structure of subunit I of a cbb(3) oxidase (Vibrio cholerae) was constructed. The model predicts that a tyrosine residue structurally analogous to the active-site tyrosine in other oxidases is present in the cbb(3) oxidases but that the tyrosine originates from a different transmembrane helix within the protein. The predicted active-site tyrosine is conserved in the sequences of all of the known cbb(3) oxidases. Mutagenesis of the tyrosine to phenylalanine in the V. cholerae oxidase resulted in a fully assembled enzyme with nativelike structure but lacking catalytic activity. These findings strongly suggest that all of the heme-copper oxidases utilize the same catalytic mechanism and provide an unusual example in which a critical active-site residue originates from different places within the primary sequence for different members of the same superfamily.  相似文献   

13.
The cbb3-type cytochrome c oxidases (cbb3-Cox) constitute the second most abundant cytochrome c oxidase (Cox) group after the mitochondrial-like aa3-type Cox. They are present in bacteria only, and are considered to represent a primordial innovation in the domain of Eubacteria due to their phylogenetic distribution and their similarity to nitric oxide (NO) reductases. They are crucial for the onset of many anaerobic biological processes, such as anoxygenic photosynthesis or nitrogen fixation. In addition, they are prevalent in many pathogenic bacteria, and important for colonizing low oxygen tissues. Studies related to cbb3-Cox provide a fascinating paradigm for the biogenesis of sophisticated oligomeric membrane proteins. Complex subunit maturation and assembly machineries, producing the c-type cytochromes and the binuclear heme b3-CuB center, have to be coordinated precisely both temporally and spatially to yield a functional cbb3-Cox enzyme. In this review we summarize our current knowledge on the structure, regulation and assembly of cbb3-Cox, and provide a highly tentative model for cbb3-Cox assembly and formation of its heme b3-CuB binuclear center. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

14.
The respiratory chain enzymes of microaerophilic bacteria should play a major role in their adaptation to growth at low oxygen tensions. The genes encoding the putative NADH:quinone reductases (NDH-1), the ubiquinol:cytochrome c oxidoreductases (bc1 complex) and the terminal oxidases of the microaerophiles Campylobacter jejuni and Helicobacter pylori were analysed to identify structural elements that may be required for their unique energy metabolism. The gene clusters encoding NDH-1 in both C. jejuni and H. pylori lacked nuoE and nuoF, and in their place were genes encoding two unknown proteins. The NuoG subunit in these microaerophilic bacteria appeared to have an additional Fe-S cluster that is not present in NDH-1 from other organisms; but C. jejuni and H. pylori differed from each other in a cysteine-rich segment in this subunit, which is present in some but not all NDH-1. Both organisms lacked genes orthologous to those encoding NDH-2. The subunits of the bc1 complex of both bacteria were similar, and the Rieske Fe-S and cytochrome b subunits had significant similarity to those of Paracoccus denitrificans and Rhodobacter capsulatus, well-studied bacterial bc1 complexes. The composition of the terminal oxidases of C. jejuni and H. pylori was different; both bacteria had cytochrome cbb3 oxidases, but C. jejuni also contained a bd-type quinol oxidase. The primary structures of the major subunits of the cbb3-type (terminal) oxidase of C. jejuni and H. pylori indicated that they form a separate group within the cbb3 protein family. The implications of the results for the function of the enzymes and their adaptation to microaerophilic growth are discussed.  相似文献   

15.
A novel scenario for the evolution of haem-copper oxygen reductases   总被引:1,自引:0,他引:1  
The increasing sequence information on oxygen reductases of the haem-copper superfamily, together with the available three-dimensional structures, allows a clear identification of their common, functionally important features. Taking into consideration both the overall amino acid sequences of the core subunits and key residues involved in proton transfer, a novel hypothesis for the molecular evolution of these enzymes is proposed. Three main families of oxygen reductases are identified on the basis of common features of the core subunits, constituting three lines of evolution: (i) type A (mitochondrial-like oxidases), (ii) type B (ba3-like oxidases) and (iii) type C (cbb3-type oxidases). The first group can be further divided into two subfamilies, according to the helix VI residues at the hydrophobic end of one of the proton pathways (the so-called D-channel): (i) type A1, comprising the enzymes with a glutamate residue in the motif -XGHPEV-, and (ii) type A2, enzymes having instead a tyrosine and a serine in the alternative motif -YSHPXV-. This second subfamily of oxidases is shown to be ancestor to the one containing the glutamate residue, which in the Bacteria domain is only present in oxidases from Gram-positive or purple bacteria. It is further proposed that the Archaea domain acquired terminal oxidases by gene transfer from the Gram-positive bacteria, implying that these enzymes were not present in the last common ancestor before the divergence between Archaea and Bacteria. In fact, most oxidases from archaea have a higher amino acid sequence identity and similarity with those from bacteria, mainly from the Gram-positive group, than with oxidases from other archaea. Finally, a possible relation between the dihaemic subunit (FixP) of the cbb3 oxidases and subunit II of caa3 oxidases is discussed. As the families of haem-copper oxidases can also be identified by their subunit II, a parallel evolution of subunits I and II is suggested.  相似文献   

16.
Biogenesis of human mitochondrial complex I (CI) requires the coordinated assembly of 45 subunits derived from both the mitochondrial and nuclear genome. The presence of CI subcomplexes in CI-deficient cells suggests that assembly occurs in distinct steps. However, discriminating between products of assembly or instability is problematic. Using an inducible NDUFS3-green fluorescent protein (GFP) expression system in HEK293 cells, we here provide direct evidence for the stepwise assembly of CI. Upon induction, six distinct NDUFS3-GFP-containing subcomplexes gradually appeared on a blue native Western blot also observed in wild type HEK293 mitochondria. Their stability was demonstrated by differential solubilization and heat incubation, which additionally allowed their distinction from specific products of CI instability and breakdown. Inhibition of mitochondrial translation under conditions of steady state labeling resulted in an accumulation of two of the NDUFS3-GFP-containing subcomplexes (100 and 150 kDa) and concomitant disappearance of the fully assembled complex. Lifting inhibition reversed this effect, demonstrating that these two subcomplexes are true assembly intermediates. Composition analysis showed that this event was accompanied by the incorporation of at least one mitochondrial DNA-encoded subunit, thereby revealing the first entry point of these subunits.  相似文献   

17.
Cytochrome cbb 3 oxidase, a member of the heme–copper oxidase superfamily, catalyses the reduction of oxygen to water and generates a proton gradient. Cytochrome c oxidases are characterized by a catalytic subunit (subunit I) containing two hemes and one copper ion ligated by six invariant histidine residues, which are diagnostic of heme–copper oxidases in all type of the heme–copper oxidase superfamily. Alignments of the amino acid sequences of subunit I (FixN or CcoN) of the cbb 3-type oxidases show that catalytic subunit also contains six non-canonical histidine residues that are conserved in all CcoN subunits of the cbb 3 oxidase, but not the catalytic subunits of other members of heme–copper oxidases superfamily. The function of these six CcoN-specific conserved histidines of cbb 3-type oxidase in R. capsulatus is unknown. To analyze the contribution of the two invariant histidines of CcoN, H300 and H394, in activity and assembly of the Rhodobacter capsulatus cbb 3-type oxidase, they were substituted for valine and alanine, respectively by site-directed mutagenesis. H300V and H394A mutations were analyzed with respect to their activity and assembly. It was found that H394A mutation led to a defect in the assembly of both CcoP and CcoO in the membrane, which results in almost complete loss of activity and that although the H300V mutant is normally assembled in the membrane and retain their stability, its catalytic activity is significantly reduced when compared with wild-type oxidase.  相似文献   

18.
Sharma V  Wikström M  Laakkonen L 《Biochemistry》2008,47(14):4221-4227
The active site of the heme-copper oxidases comprises a redox-active high-spin heme and a tris-histidine copper center Cu B. Two amino acids in the close vicinity of the metals, a tyrosine and a tryptophan from helix 6, have been shown to be absolutely required for the catalytic function and should be considered part of the active site. Additionally, amino acid residues from interhelical loops strongly modify the activity. In a separate subfamily of heme-copper oxidases, the cbb 3-type oxidases, the metal centers are identical, the tyrosine is found in helix 7, but nothing is known of the corresponding tryptophan or of the involvement of the loop residues. We have observed a conserved aromatic cluster in the known oxidase structures, including the essential tryptophan and loop residues, and refined our earlier model of the cbb 3-type oxidase from Rhodobacter sphaeroides to test the feasibility of a similar structure. In the refined model, the interactions around the Delta-propionate of the high-spin heme resemble closely those seen in crystal structures of other terminal oxidases. Two alternative models (G- and C-models) that differ for the positioning of conserved tryptophans in helix 6, are presented. Molecular dynamics simulations on the catalytic subunit of the cbb 3-type oxidase model result in a conformational change of the active-site tyrosine, which may be related to different ligand-binding properties of the cbb 3-type oxidases. The relationship between sequence and functional data for defining the subfamily is discussed.  相似文献   

19.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

20.
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号