首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Leaves of soybean plants grown in contrasting light and nutrient availability conditions were exposed to constant and to flashing light regimes with lightflecks of different frequencies, durations and photon flux density (PFD). The lightfleck characteristics were selected to be representative of the range of variation found for sunflecks in a soybean canopy. CO2 fixation rates were measured using a fast-response gas-exchange apparatus. The net CO2 fixation due to 1-s-duration lightflecks was 1·3 times higher than predicted from steady-state measurements in constant light at the lightfleck and background PFD. This lightfleck utilization efficiency (LUE) was somewhat higher at a high than at a low frequency of one second lightflecks. LUE in flashing light with very short lightflecks (0·2s) and single 1 s lightflecks was as high as 2, but decreased sharply with increasing duration of lightflecks. This decrease occurred because CO2 fixation rates during lightflecks were constrained by carbon metabolism and induction limitations, and because the contribution of post-illumination CO2 fixation to total CO2 fixation decreased with increased duration of lightflecks. LUE increased with increased PFD during the lightflecks, particularly in leaves from plants grown in high-light, high-nutrient conditions. Saturation PFDs were much higher in flashing light than in constant light. Only small differences in LUE were apparent between leaves from the three growth conditions.  相似文献   

2.
 We examined in the field the photosynthetic utilization of fluctuating light by six neotropical rainforest shrubs of the family Rubiaceae. They were growing in three different light environments: forest understory, small gaps, and clearings. Gas exchange techniques were used to analyse photosynthetic induction response, induction maintenance during low-light periods, and lightfleck (simulated sunfleck) use efficiency (LUE). Total daily photon flux density (PFD) reaching the plants during the wet season was 37 times higher in clearings than in the understory, with small gaps exhibiting intermediate values. Sunflecks were more frequent, but shorter and of lower intensity in the understory than in clearings. However, sunflecks contributed one-third of the daily PFD in the understory. Maximum rates of net photosynthesis, carboxylation capacity, electron transport, and maximum stomatal conductance were lower in understory species than in species growing in small gaps or clearings, while the reverse was true for the curvature factor of the light response of photosynthesis. No significant differences were found in the apparent quantum yield. The rise of net photosynthesis during induction after transfer from low to high light varied from a hyperbolic shape to a sigmoidal increase. Rates of photosynthetic induction exhibited a negative exponential relationship with stomatal conductance in the shade prior to the increase in PFD. Leaves of understory species showed the most rapid induction and remained induced longer once transferred to the shade than did leaves of medium- or high-light species. LUE decreased rapidly with increasing lightfleck duration and was affected by the induction state of the leaf. Fully induced leaves exhibited LUEs up to 300% for 1-s lightflecks, while LUE was below 100% for 1–80 s lightflecks in uninduced leaves. Both induced and uninduced leaves of understory species exhibited higher LUE than those of species growing in small gaps or clearings. However, most differences disappeared for lightflecks 10 s long or longer. Thus, understory species, which grew in a highly dynamic light environment, had better capacities for utilization of rapidly fluctuating light than species from habitats with higher light availability. Received: 4 January 1997 / Accepted: 28 April 1997  相似文献   

3.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

4.
Alocasia (Alocasia macrorrhiza [L.] G. Don) and soybean (Glycine max [L.]) were grown under high or low photon flux density (PFD) conditions to achieve a range of photosynthetic capacities and light-adaptation modes. The CO2 assimilation rate and in vivo linear electron transport rate (Jf) were determined over a range of PFDs and under saturating 1-s-duration lightflecks applied at a range of frequencies. At the same mean PFD, the assimilation rate and the Jf were lower under the lightfleck regimes than under constant light. The activation state of two, key enzymes of the photosynthetic carbon reduction cycle pathway, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose-1,6-bisphosphatase, and the photosynthetic induction states (ISs) were also found to be lower under flashing as compared to continuous PFD. Under all conditions, the IS measured 120 s after an increase in PFD to constant and saturating values was highly correlated with the Rubisco activation state and stomatal conductances established in the light regime before the increase. Both the fructose-1,6-bisphosphatase and Rubisco activities established in a particular light regime were highly correlated with the mean Jf in that regime. The relationships between enzyme activation state and Jf and between IS and enzyme activation state were similar in soybean and Alocasia and were not affected either by growth-light regime, and hence photosynthetic capacity, or by flashing versus constant PFD. The common relationship between the linear Jf and the activation state of key enzymes suggests that electron transport may be the determinant of the signal regulating IS, at least to the extent that the IS is controlled by the activation state of key stromal enzymes.  相似文献   

5.
Photosynthetic induction state, stomatal conductance and light regulation of ribulose-1,5-bisphosphate carboxylase (rubisco) were examined for leaves in a mature, closed soybean (Glycine max) canopy (leaf area index approximately 5) with the objective to determine the extent to which these factors may be limiting the capacity to respond to light transients during sunflecks. When sampled along a vertical gradient, leaves near the bottom of the canopy had lower rubisco contents and chlorophyll a/b ratios as compared with upper leaves. Leaves sampled at midcanopy showed a wide variation in photosynthetic induction state (ratio of the photosynthetic rate achieved after 1 minute exposure to high light to the steady-state assimilation rate achieved after 20 minutes exposure). Both photosynthetic induction state and the initial rubisco activity varied in parallel with stomatal conductance. By contrast there was no correlation between total rubisco activity and stomatal conductance. The results indicate that induction state, as determined by the light regulation of both rubisco activity and stomatal conductance, is an important limitation to the ability of leaves in a soybean canopy to respond to light transients that occur during sunflecks.  相似文献   

6.
7.
Summary Responses of leaf gas exchange in shade and half-shade grown seedlings of the European beech, Fagus sylvatica L., to constant light conditions indicate different phases of photosynthetic induction: an immediate, a fast and a subsequent slow phase. The slow phase has both biochemical and stomatal components. The higher the induction, the higher the lightfleck utilization efficiency (LUE) attributable to a lightfleck. LUE can be higher than 100% compared to a theoretical instantaneous response. Lightfleck quantum yield (total carbon gain attributable to a lightfleck per incident quantum density in the fleck) is highest in short pulses of light. Post-illumination carbon gain initially increases with fleck length, levelling off above 20 s. The lower the induction, the longer carbon is fixed post-illuminatively (up to 84 s) but the less carbon is gained. Shade leaves are induced much faster than partial shade leaves. They utilize series of lightflecks to become fully induced, while half-shade (and sun) leaves depend on continuous high light. Half-shade leaves lose induction faster in low light between lightflecks. High as well as low temperatures strongly delay induction in half-shade but not in shade leaves. In general, shade leaves are much better adapted to the dynamic light environment of the forest understorey; however, their water-use efficiency during induction is lower.Dedicated to Prof. O. L. Lange on the occasion of his 65th birthday  相似文献   

8.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

9.
Summary Steady-state and dynamic stomatal and assimilation responses to light transients were characterized in sun- and shade-acclimated plants of Piper auritum, a pioneer tree, and Piper aequale a shade-tolerant shrub from a tropical forest at Los Tuxtlas, Veracruz, México. Despite essentially identical steady-state responses of stomatal conductance to PFD of P. aequale and P. auritum shade plants, the dynamic responses to lightflecks were markedly different and depended on the growth regime. For both species from both growth environments, the increase in stomatal conductance occurring in response to a lightfleck continued long after the lightfleck itself so that the maximum stomatal conductance was not reached until 20–40 min after the lightfleck. Closing then occurred until stomatal conductance returned to near its original value before the lightfleck. Plants that were grown under light regimes similar to those of their natural habitat (high light for P. auritum and shade for P. aequale) had large maximum excursions of stomatal conductance and slower closing than opening responses. Plants grown under the opposite conditions had smaller excursions of stomatal conductance, especially in P. auritum, and more symmetrical opening and closing. The large and hysteretic response of stomatal conductance of P. aequale shade plants to a lightfleck was shown to improve carbon gain during subsequent lightflecks by 30–200%, depending on lightfleck duration. In contrast the very small stomatal response to lightflecks in P. auritum shade plants, resulted in no significant improvement in use of subsequent lightflecks.  相似文献   

10.
The effects of leaf-air vapor pressure deficit (VPD) on the transient and steady-state stomatal responses to photon flux density (PFD) were evaluated in Piper auritum, a pioneer tree, and Piper aequale, a shade tolerant shrub, that are both native to tropical forests at Los Tuxtlas, Veracruz, México. Under constant high-PFD conditions, the stomata of shade-acclimated plants of both species were sensitive to VPD, exhibiting a nearly uniform decrease in gs as VPD increased. Acclimation of P. auritum to high light increased the stomatal sensitivity to VPD that was sufflcient to cause a reduction in transpiration at high VPD's. At low PFD, where gs was already reduced, there was little additional absolute change with VPD for any species or growth condition. The stomatal response to 8-min duration lightflecks was strongly modulated by VPD and varied between the species and growth light conditions. In P. aequale shade plants, increased VPD had no effect on the extent of stomatal opening but caused the rate of closure after the lightfleck to be faster. Thus, the overall response to a lightfleck changed from hysteretic (faster opening than closure) to symmetric (similar opening and closing rates). Either high or low VPD caused gs not to return to the steady-state value present before the lightfleck. At high VPD the value after was considerably less than the value before whereas at low VPD the opposite occurred. Shade-acclimated plants of P. auritum showed only a small gs response to lightflecks, which was not affected by VPD. Under sunfleck regimes in the understory, the stomatal response of P. aequale at low VPD may function to enhance carbon gain by increasing the induction state. At high VPD, the shift in the response enhances water use efficiency but at the cost of reduced assimilation.  相似文献   

11.
Responses to simulated sunflecks were examined in upper canopy and coppice leaves of Nothofagus cunninghamii growing in an old-growth rainforest gully in Victoria, Australia. Shaded leaves were exposed to a sudden increase in irradiance from 20 to 1500 micromol m(-2) s(-1). Gas exchange and chlorophyll fluorescence were measured during a 10 min simulated sunfleck and, in the ensuing dark treatment, we examined the recovery of PS II efficiency and the conversion state of xanthophyll cycle pigments. Photosynthetic induction was rapid compared with tropical and northern hemisphere species. Stomatal conductance was relatively high in the shade and stomata did not directly control photosynthetic induction under these conditions. During simulated sunflecks, zeaxanthin was formed rapidly and photochemical efficiency was reduced. These processes were reversed within 30 min in coppice leaves, but this took longer in upper canopy leaves. Poor drought tolerance and achieving a positive carbon balance in a shaded canopy may be functionally related to high stomatal conductance in the shade in N. cunninghamii. The more persistent reduction in photochemical efficiency of upper canopy leaves, which means less efficient light use in subsequent shade periods, but stronger protection from high light, may be related to the generally higher irradiance and longer duration of sunflecks in the upper canopy, but potentially reduces carbon gain during shade periods by 30%.  相似文献   

12.
Plants in natural environments are often exposed to fluctuations in light intensity, and leaf‐level acclimation to light may be affected by those fluctuations. Concurrently, leaves acclimated to a given light climate can become progressively shaded as new leaves emerge and grow above them. Acclimation to shade alters characteristics such as photosynthetic capacity. To investigate the interaction of fluctuating light and progressive shading, we exposed three‐week old tomato (Solanum lycopersicum ) plants to either lightflecks or constant light intensities. Lightflecks of 20 s length and 1000 μmol m?2 s?1 peak intensity were applied every 5 min for 16 h per day, for 3 weeks. Lightfleck and constant light treatments received identical daily light sums (15.2 mol m?2 day?1). Photosynthesis was monitored in leaves 2 and 4 (counting from the bottom) during canopy development throughout the experiment. Several dynamic and steady‐state characteristics of photosynthesis became enhanced by fluctuating light when leaves were partially shaded by the upper canopy, but much less so when they were fully exposed to lightflecks. This was the case for CO2‐saturated photosynthesis rates in leaves 2 and 4 growing under lightflecks 14 days into the treatment period. Also, leaf 2 of plants in the lightfleck treatment showed significantly faster rates of photosynthetic induction when exposed to a stepwise change in light intensity on day 15. As the plants grew larger and these leaves became increasingly shaded, acclimation of leaf‐level photosynthesis to lightflecks disappeared. These results highlight continuous acclimation of leaf photosynthesis to changing light conditions inside developing canopies.  相似文献   

13.
Photosynthetic carbon gain in rapidly fluctuating light is controlled by stomatal conductance, activation of ribulose-1,5-bisphosphate carboxylase-oxygenase, a fast induction step in the regeneration of ribulose-1,5-bisphosphate, and the build-up of pools of photosynthetic intermediates that allow post-illumination CO2 fixation. Experimental work over recent years has identified and characterised these factors. A physiologically-based dynamic model is described here that incorporates these factors and allows the simulation of carbon gain in response to any arbitrary sequence of light levels. The model output is found to conform well to previously reported plant responses of Alocasia macrorrhiza (L.) G. Don. observed under widely differing conditions. The model shows (i) responses of net assimilation rate and stomatal conductance to constant light levels and different CO2 concentrations that are consistent with experimental observations and predictions of a steady-state model; (ii) carbon gain to continue after the end of lightflecks, especially in uninduced leaves; (iii) carbon gain to be only marginally reduced during low-light periods of up to 2 s; (iv) a fast-inducing component in the regeneration of ribulose-1,5-bisphosphate to be limiting for up to 60 s after an increase in light in uninduced leaves: the duration of this limitation lengthens with increasing CO2 concentration and is absent at low CO2 concentration; (v) oxygen evolution to exceed CO2 fixation during the first few seconds of a lightfleck, but CO2 fixation to continue after the end of the lightfleck whereas oxygen evolution decreases to low-light rates immediately. The model is thus able to reproduce published responses of leaves to a variety of perturbations. This provides good evidence that the present formulation of the model includes the essential rate-determining factors of photosynthesis under fluctuating light conditions. Received: 27 January 1997 / Accepted: 15 April 1997  相似文献   

14.
Gas exchange responses to rapid changes in light were studied in a C3 tree, Claoxylon sandwicense Muell-Arg and a C4 tree, Euphorbia forbesii Sherff that are native to the understory of a mesic Hawaiian forest. When light was increased to 500 micromoles per meter per second following a 2 hour preexposure at 22 micromoles per meter per second, net CO2 uptake rates and stomatal conductance gradually increased for over 1 hour in C. sandwicense but reached maximum values within 30 minutes in E. forbesii. Calculation of the intercellular CO2 pressures indicated that the primary limitation to CO2 uptake during this induction was nonstomatal in both species. The photosynthetic response to simulated sunflecks (lightflecks) was strongly dependent on the induction state of the leaf. Total CO2 uptake during a lightfleck was greater and the response was faster after exposure of the leaf to high light than when the leaf had been exposed only to low light for the previous 2 hours. During a series of lightflecks, induction resulted in increased CO2 uptake in successive lightflecks. Significant postillumination CO2 fixation was evident and contributed substantially to the total carbon gain, especially for lightflecks of 5 to 20 seconds' duration.  相似文献   

15.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   

16.
 以亚热带常绿阔叶林下一种常见的灌木富贵草(Pachysandra terminalis)为研究对象,利用气体交换和叶绿素荧光技术研究了其对模拟光斑的光合响应。在同样辐射通量(非光抑制)的情况下,光合诱导过程的快速组分时间内光斑可以提高富贵草对光斑的利用能力(光斑诱导的碳同化量可高出对照48%)。叶绿素荧光测量结果表明:1)光斑与光斑之间的暗期发生了qN弛豫过程;2)暗期之后的光期光化学能量转换效率提高。这两个原因可能是快速组分时间内光斑诱导富贵草的碳同化量提高的主要原因之一。强光光斑簇可以诱导富贵草光抑制  相似文献   

17.
Oxygen and CO2 exchange were measured concurrently in leaves of shade-grownAlocasia macrorrhiza (L.) G. Don during lightflecks consisting of short periods of high photon flux density (PFD) superimposed on a low-PFD background illumination. Oxygen exchange was measured with a zirconium-oxide ceramic cell in an atmosphere containing 1 600 bar O2 and 350 bar CO2. Following an increase in PFD from 10 to 500 mol photons·m-2·s-1, O2 evolution immediately increased to a maximum rate that was about twice as high as the highest CO2-exchange rates that were observed. Oxygen evolution then decreased over the next 5–10 s to rates equal to the much more slowly increasing rates of CO2 uptake. When the PFD was decreased at the end of a lightfleck, O2 evolution decreased nearly instantaneously to the low-PFD rate while CO2 fixation continued at an elevated rate for about 20 s. When PFD during the lightfleck was at a level that was limiting for steady-state CO2 exchange, then the O2-evolution rate was constant during the lightfleck. This observed pattern of O2 evolution during lightflecks indicated that the maximum rate of electron transport exceeded the maximum rate of CO2 fixation in these leaves. In noninduced leaves, rates of O2 evolution for the first fraction of a second were about as high as rates in fully induced leaves, indicating that O2 evolution and the electron-transport chain are not directly affected by the leaf's induction state. Severalfold differences between induced and noninduced leaves in O2 evolution during a lightfleck were seen for lightflecks longer than a few seconds where the rate of O2 evolution appeared to be limited by the utilization of reducing power in CO2 fixation.Abbreviation PFD photon flux density (of photosynthetically active radiation)  相似文献   

18.
Krall JP  Pearcy RW 《Plant physiology》1993,103(3):823-828
Leaves of maize (Zea mays L.) were enclosed in a temperature-controlled cuvette under 35 Pa (350 [mu]bars) CO2 and 0.2 kPa (0.2%)O2 and exposed to short periods (1-30 s) of illumination (light-flecks). The rate and total amount of CO2 assimilated and O2 evolved were measured. The O2 evolution rate was taken as an indicator of the rate of photosynthetic noncyclic electron transport (NCET). In this C4 species, the response of electron transport during the lightflecks qualitatively mimicked that of C3 species previously tested, whereas the response of CO2 assimilation differed. Under short-duration lightflecks at high photon flux density (PFD), the mean rate of O2 evolution was greater than the steady-state rate of O2 evolution under the same PFD due to a burst of O2 evolution at the beginning of the lightfleck. This O2 burst was taken as indicating a high level of NCET involved in the buildup of assimilatory charge via ATP, NADPH, and reduced or phosphorylated metabolites. However, as lightfleck duration decreased, the amount of CO2 assimilated per unit time of the lightfleck (the mean rate of CO2 assimilation) decreased. There was also a burst of CO2 from the leaf at the beginning of low-PFD lightflecks that further reduced the assimilation during these lightflecks. The results are discussed in terms of the buildup of assimilatory charge through the synthesis of high-energy metabolites specific to C4 metabolism. It is speculated that the inefficiency of carbon uptake during brief light transients in the C4 species, relative to C3 species, is due to the futile synthesis of C4 cycle intermediates.  相似文献   

19.
Few studies have evaluated elevated CO2 responses of trees in variable light despite its prevalence in forest understories and its potential importance for sapling survival. We studied two shade-tolerant species (Acer rubrum, Cornus florida) and two shade-intolerant species (Liquidambar styraciflua, Liriodendron tulipifera) growing in the understory of a Pinus taeda plantation under ambient and ambient+200 ppm CO2 in a free air carbon enrichment (FACE) experiment. Photosynthetic and stomatal responses to artificial changes in light intensity were measured on saplings to determine rates of induction gain under saturating light and induction loss under shade. We expected that growth in elevated CO2 would alter photosynthetic responses to variable light in these understory saplings. The results showed that elevated CO2 caused the expected enhancement in steady-state photosynthesis in both high and low light, but did not affect overall stomatal conductance or rates of induction gain in the four species. Induction loss after relatively short shade periods (<6 min) was slower in trees grown in elevated CO2 than in trees grown in ambient CO2 despite similar decreases in stomatal conductance. As a result leaves grown in elevated CO2 that maintained induction well in shade had higher carbon gain during subsequent light flecks than was expected from steady-state light response measurements. Thus, when frequent sunflecks maintain stomatal conductance and photosynthetic induction during the day, enhancements of long-term carbon gain by elevated CO2 could be underestimated by steady-state photosynthetic measures. With respect to species differences, both a tolerant, A. rubrum, and an intolerant species, L. tulipifera, showed rapid induction gain, but A. rubrum also lost induction rapidly (c. 12 min) in shade. These results, as well as those from independent studies in the literature, show that induction dynamics are not closely related to species shade tolerance. Therefore, it cannot be concluded that shade-tolerant species necessarily induce faster in the variable light conditions common in understories. Although our study is the first to examine dynamic photosynthetic responses to variable light in contrasting species in elevated CO2, studies on ecologically diverse species will be required to establish whether shade-tolerant and -intolerant species show different photosynthetic responses in elevated CO2 during sunflecks. We conclude that elevated CO2 affects dynamic gas exchange most strongly via photosynthetic enhancement during induction as well as in the steady state. Received: 1 April 1999 / Accepted: 16 August 1999  相似文献   

20.
We studied photosynthetic and stomatal responses of grain sorghum ( Sorghum bicolor [L.] Moench cv. Pioneer 8500), soybean ( Glycine max L. cv. Flyer) and eastern gamagrass ( Tripsacum dactyloides L.) during experimental sun and shade periods simulating summer cloud cover. Leaf gas exchange measurements of field plants showed that short-term (5 min) shading of leaves to 300–400 μmol m−2 s−1 photosynthetic photon flux density reduced photosynthesis, leaf temperature, stomatal conductance, transpiration and water use efficiency and increased intercellular CO2 partial pressure. In all species, photosynthetic recovery was delayed when leaves were reilluminated, apparently by stomatal closure. The strongest stomatal response was in soybean. Photosynthetic recovery was studied further with soybeans grown indoors (maximum photosynthetic photon flux density 1 200 μmol m−2 s−1). Plants grown indoors had responses to shade similar to those of field plants, except for brief nonstomatal limitation immediately after reillumination. These responses indicated the importance of the light environment during leaf development on assimilation responses to variable light, and suggested different limitations on carbon assimilation in different parts of the soybean canopy. Photosynthetic oxygen evolution recovered immediately upon reillumination, indicating that the light reactions did not limit soybean photosynthetic recovery. While shade periods caused stomatal closure and reduced carbon gain and water loss in all species, the consequences for carbon gain/water loss were greatest in soybean. The occurrence of stomatal closure in all three species may arise from their shared phenologies and herbaceous growth forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号