首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data.

Principal Findings

Water proton T1, T2, and T of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T2 and T, but did not change high-field T1. T dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(0) values that closely approximated T2. The T dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz.

Conclusions

Proton exchange is a minor pathway for tissue T1 and T relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T to T1.  相似文献   

2.
Characterization of purified New Delhi metallo-β-lactamase-1   总被引:1,自引:0,他引:1  
Thomas PW  Zheng M  Wu S  Guo H  Liu D  Xu D  Fast W 《Biochemistry》2011,50(46):10102-10113
New Delhi metallo-β-lactmase-1 (NDM-1) has recently emerged as a global threat because of its ability to confer resistance to almost all clinically used β-lactam antibiotics, its presence within an easily transmissible plasmid bearing a number of other antibiotic resistance determinants, its carriage in a variety of enterobacteria, and its presence in both nosocomial and community-acquired infections. To improve our understanding of the molecular basis of this threat, NDM-1 was purified and characterized. Recombinant NDM-1 bearing its native leader sequence was expressed in Escherichia coli BL21 cells. The major processed form found to be released into culture media contains a 35-residue truncation at the N-terminus. This form of NDM-1 is monomeric and can be purified with 1.8 or 1.0 equiv of zinc ion, depending on the experimental conditions. Treatment of dizinc NDM-1 with EDTA results in complete removal of both zinc ions, but the relatively weaker chelator PAR chelates only 1 equiv of zinc ion from folded protein but 1.9 equiv of zinc ion from denatured protein, indicating different affinities for each metal binding site. UV-vis spectroscopy of the dicobalt metalloform along with molecular dynamics simulations of the dizinc metallo form indicates that the dinuclear metal cluster at the active site of NDM-1 is similar in structure to other class B1 metallo-β-lactamases. Supplementation of excess zinc ions to monozinc NDM-1 has differential effects on enzyme activity with respect to three different classes of β-lactam substrates tested, penems, cephems, and carbapenems, and likely reflects dissimilar contributions of the second equivalent of metal ion to the catalysis of the hydrolysis of these substrates. Fits to these concentration dependencies are used to approximate the K(d) value of the more weakly bound zinc ion (2 μM). NDM-1 achieved maximal activity with all substrates tested when supplemented with approximately 10 μM ZnSO(4), displaying k(cat)/K(M) values ranging from 1.4 × 10(6) to 2.0 × 10(7) M(-1) s(-1), and a slight preference for cephem substrates. This work provides a foundation for an improved understanding of the molecular basis of NDM-1-mediated antibiotic resistance and should allow more quantitative studies to develop targeted therapeutics.  相似文献   

3.
Abstract

The 5-oxo-6-methylene-pyrimidine-2,4-dione intermediate (6) that is formed when 5-acetoxy-6-acetoxymethyl-1-β-D-(5-O-acetyl-2,3-O-isopropylidene)-ribofuranosyluracil (5) is treated with sodium hydroxide undergoes cyclization at pH 14 to give 2′,3′-O-isopropylidene-5-hydroxy- O 5, 6-methanouridine (8) in good yield. Conversion of 8 into the 5-triflate ester 14 followed by reduction with [(Ph)3P]4Pd/Bu3SnH and deblocking with acetic acid then affords O 5′, 6-methanouridine (4) Conformational studies (NOE difference spectra, vicinal 1H-13C coupling constants, NOESY and CD spectra, molecular modeling) indicate that the C7-methylene group of 4 projects towards the furanose ring oxygen atom, producing a glycosyl rotation angle of about ? 160°.  相似文献   

4.
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition.  相似文献   

5.
A new HPLC method was developed to separate linear from β(1–6)-branched β(1–3)-glucooligosaccharides. This methodology has permitted the isolation of the first fungal β(1–6)/β(1–3)-glucan branching transglycosidase using a cell wall autolysate of Aspergillus fumigatus (Af). The encoding gene, AfBGT2 is an ortholog of AfBGT1, another transglycosidase of A. fumigatus previously analyzed (Mouyna, I., Hartland, R. P., Fontaine, T., Diaquin, M., Simenel, C., Delepierre, M., Henrissat, B., and Latgé, J. P. (1998) Microbiology 144, 3171–3180). Both enzymes release laminaribiose from the reducing end of a β(1–3)-linked oligosaccharide and transfer the remaining chain to another molecule of the original substrate. The AfBgt1p transfer occurs at C-6 of the non-reducing end group of the acceptor, creating a kinked β(1–3;1–6) linear molecule. The AfBgt2p transfer takes place at the C-6 of an internal group of the acceptor, resulting in a β(1–3)-linked product with a β(1–6)-linked side branch. The single Afbgt2 mutant and the double Afbgt1/Afbgt2 mutant in A. fumigatus did not display any cell wall phenotype showing that these activities were not responsible for the construction of the branched β(1–3)-glucans of the cell wall.  相似文献   

6.
7.
8.
As CYP1A enzymes are induced by certain contaminants, their induction pattern has been used as a biomarker for exposure of certain pollutants. Ethoxyresorufin O-deethylase (EROD) activities are widely used in environmental assessments of polychlorinated biphenyls in many wildlife species. The EROD activity, a typical probe for CYP1A enzyme was studied in liver microsomes prepared from Adélie penguins (Pygoscelis adeliae) (n=10). Penguin liver microsomes (0.5 mg/mL) were incubated with the substrate ethoxyresorufin and NADPH at 37 degrees C for 10 min, and the reaction was terminated by addition of methanol. The formation of the metabolite resorufin was assayed by an HPLC method. EROD activity was present in all liver samples studied. Penguin liver microsomal fraction exhibits typical Michaelis-Menten kinetics in the O-deethylation of ethoxyresorufin. The data were best described by a biphasic kinetic model, which could be interpreted in terms of two populations of CYP enzyme. Mean (+/-S.D.) K(m) values for high- and low-affinity components of EROD were 51+/-109 (range: 0.16 to 358) and 872+/-703 (range: 303 to 2450) nM, respectively. The corresponding mean V(max) values for the high- and low-affinity enzyme activities were 1.8+/-1.4 (range: 0.21 to 5.1) and 9.6+/-3.7 (range: 6.0 to 18.3) pmol/min/mg. The EROD activity in penguin liver microsomes was inhibited by CYP1A inhibitors (phenacetin, 7-ethoxycoumarin and proportional variant-naphthoflavone), whereas other CYP inhibitors for CYP2C9 (tolbutamide), 2C19 (mephenytoin), 2D6 (debrisoquin) and 2E1 (diethyldithiocarbamate) had no effect. These results suggest that CYP1A-like enzymes are present in penguin livers. The activity of this enzyme may be a useful biomarker for assessing the environmental impact of pollutants on Antarctic wildlife.  相似文献   

9.
Genetic variation of apoA1/C3/A4 is associated with hyperlipidaemia and coronary heart disease. We report the polymerase chain reaction (PCR) conditions for determining three polymorphic sites in the 5 flanking region of apoA1 using DNA prepared from small aliquots of whole blood. These polymorphisms identify six haplotypes that will be of value in genetic studies.  相似文献   

10.
Abstract

We have determined the 1H→3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT)·poly(dA-dT), poly(dG-dC)·poly(dG- dC) and poly(dA-dC)·poly(dG-dT) as well as homopolynucleotides poly(dA)·poly(dT) and poly(dG)·poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4–6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25°C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E.coli DNA, dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution.

Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT)·poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating “wrinkled” DNA model. The conformations of poly(dG-dC)·poly(dG-dC) and poly(dA-dC)·poly(dG-dT), according to the exchange data obtained, are within the B form. For homopolynucleotides in 0.15 M NaCl, the kA value for poly(dA)·poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG)·poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B? A conformation equilibrium for poly(dG)·poly(dC) in solution.

The increase of NaCl concentration to 3 M results in a B→Z transition in the case of poly(dG-dC)·poly(dG-dC) and in the shift of B?A equilibrium towards the A-form in the case of poly(dG)·poly(dC), as is evidenced by alterations of their KG values. Poly(dA-dT)·poly(dA-dT) in 6 M CsF and poly(dA-dC)·poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the “X-type” CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA)·poly(dT) in 6 M CsF corresponds to the “heteronomous” DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

11.
There is no well-established in vivo marker of nigral degeneration in Parkinson''s disease (PD). An ideal imaging marker would directly mirror the loss of substantia nigra dopaminergic neurones, which is most prominent in sub-regions called nigrosomes. High-resolution, iron-sensitive, magnetic resonance imaging (MRI) at 7T allows direct nigrosome-1 visualisation in healthy people but not in PD. Here, we investigated the feasibility of nigrosome-1 detection using 3T - susceptibility-weighted (SWI) MRI and the diagnostic accuracy that can be achieved for diagnosing PD in a clinical population. 114 high-resolution 3T – SWI-scans were reviewed consisting of a prospective case-control study in 19 subjects (10 PD, 9 controls) and a retrospective cross-sectional study in 95 consecutive patients undergoing routine clinical SWI-scans (>50 years, 9 PD, 81 non-PD, 5 non-diagnostic studies excluded). Two raters independently classified subjects into PD and non-PD according to absence or presence of nigrosome-1, followed by consensus reading. Diagnostic accuracy was assessed against clinical diagnosis as gold standard. Absolute inter- and intra-rater agreement was ≥94% (kappa≥0.82, p<0.001). In the prospective study 8/9 control and 8/10 PD; and in the retrospective study 77/81 non-PD and all 9 PD subjects were correctly classified. Diagnostic accuracy of the retrospective cohort was: sensitivity 100%, specificity 95%, NPV 1, PPV 0.69 and accuracy 96% which dropped to 91% when including non-diagnostic scans (‘intent to diagnose’). The healthy nigrosome-1 can be readily depicted on high-resolution 3T - SWI giving rise to a ‘swallow tail’ appearance of the dorsolateral substantia nigra, and this feature is lost in PD. Visual radiological assessment yielded a high diagnostic accuracy for PD vs. an unselected clinical control population. Assessing the substantia nigra on SWI for the typical ‘swallow tail’ appearance has potential to become a new and easy applicable 3T MRI diagnostic tool for nigral degeneration in PD.  相似文献   

12.
A series of C1, C2, C3 and N6 analogs of nantenine (2) was synthesized and evaluated in 5-HT(2A) and α(1A) receptor functional assays. Alkyl substitution of the C1 and N6 methyl groups of nantenine provided selective 5-HT(2A) and α(1A) antagonists, respectively. The C2 alkyloxy analogs studied were generally selective for α(1A) versus 5-HT(2A). The C3 bromo analog 15 is one of the most potent aporphinoid 5-HT(2A) antagonists known presently.  相似文献   

13.

We present the first large-scale synthesis of indigenous knowledge (IK) on New Guinea’s useful plants based on a quantitative review of 488 references and 854 herbarium specimens. Specifically, we assessed (i) spatiotemporal trends in the documentation of IK, (ii) which are New Guinea’s most useful ecosystems and plant taxa, (iii) what use categories have been better studied, and (iv) which are the best studied indigenous groups. Overall, our review integrates 40,376 use reports and 19,948 plant uses for 3434 plant species. We find that despite a significant increase in ethnobotanical studies since the first reports of 1885, all islands still remain under-investigated. Lowland and montane rainforests are the best studied habitats; legumes, palms, and figs are the most cited plant families; and Ficus, Pandanus, and Syzygium are the most useful genera. Medicinal uses have received the greatest attention and non-native species have the highest cross-cultural consensus for medicine, underscoring the culturally enriching role of non-native taxa to New Guinea’s pharmacopeia. Of New Guinea’s approximately 1100 indigenous groups, 217 are mentioned in the literature, and non-endangered groups remain better studied. We conclude that IK can contribute significantly to meet rising demands to make New Guinea’s landscapes “multifunctional” and boost the green economy, but ambitious strategies will still be needed to mainstream IK and improve its documentation.

  相似文献   

14.
15.
This study explores a new approach to pharmacophore screening involving the use of an optimized linear combination of models instead of a single hypothesis. The implementation and evaluation of the developed methodology are performed for a complete known chemical space of 5-HT1AR ligands (3616 active compounds with Ki < 100 nM) acquired from the ChEMBL database. Clusters generated from three different methods were the basis for the individual pharmacophore hypotheses, which were assembled into optimal combinations to maximize the different coefficients, namely, MCC, accuracy and recall, to measure the screening performance. Various factors that influence filtering efficiency, including clustering methods, the composition of test sets (random, the most diverse and cluster population-dependent) and hit mode (the compound must fit at least one or two models from a final combination) were investigated. This method outmatched both single hypothesis and random linear combination approaches.  相似文献   

16.
α-1 acid glycoprotein (AGP) is one of the most abundant plasma proteins. It fulfills two important functions: immunomodulation, and binding to various drugs and receptors. These different functions are closely associated and modulated via changes in glycosylation and cancer missense mutations. From a structural point of view, glycans alter the local biophysical properties of the protein leading to a diverse ligand-binding spectrum. However, glycans can typically not be observed in the resolved X-ray crystallography structure of AGP due to their high flexibility and microheterogeneity, so limiting our understanding of AGP's conformational dynamics 70 years after its discovery. We here investigate how mutations and glycosylation interfere with AGP's conformational dynamics changing its biophysical behavior, by using molecular dynamics (MD) simulations and sequence-based dynamics predictions. The MD trajectories show that glycosylation decreases the local backbone flexibility of AGP and increases the flexibility of distant regions through allosteric effects. We observe that mutations near the glycosylation site affect glycan's conformational preferences. Thus, we conclude that mutations control glycan dynamics which modulates the protein's backbone flexibility directly affecting its accessibility. These findings may assist in the drug design targeting AGP's glycosylation and mutations in cancer.  相似文献   

17.
Abstract

Proton magnetic resonance techniques were used to study the conformation of the synthetic tubulin fragment Ac-tubulin (430–441) amide in H20 and 80% CD3OH/20% D20 solutions, using water suppression techniques. Proton assignments are based on two-dimensional COSY experiments combined with one-dimensional spin decoupling.

A comparison of the NH proton shifts between the two solvents, namely ?(CD3OH/H20-H2O) shows a small solvent effect for the Lys1 to Val6 region of the molecule, whereas for Gly7 to Glu12 the solvent effect is much larger. The smaller effects in the region of Lys1 to Val6 may be due to some hydrogen bonding as these protons are shielded from the solvent These conclusions are in agreement with the circular dichroism results in 80% methano1/20% water where the a helix is present to the extent of 30%, whereas the peptide is completely unstructured in water with some aggregation.

The temperature dependence of the NH proton shifts was also carried out. In water these shifts are of the order of7-9 × 10?3 ppm/K indicating that most of the protons are not involved in hydrogen bonding. In CD30H/H20, these values range from about 4–6 × 10?3 ppm/K, which are compatible with the presence of hydrogen bonds.

Finally, binding studies were carried out between the tubulin peptide and the undecapeptide neurotransmitter substance P. The largest shifts are for the Tyr3 NH proton of the tubulin fragment, whereas for substance P it is for the Lys3, Gin5 and Leu10 NH protons, indicating a change in conformation of both peptides on interaction.  相似文献   

18.

Background

India has the highest estimated burden of tuberculosis in the world, accounting for 21% of all tuberculosis cases world-wide. However, due to lack of systematic analysis using multiple markers the available information on the genomic diversity of Mycobacterium tuberculosis in India is limited.

Methodology/Principal Findings

Thus, 65 M. tuberculosis isolates from New Delhi, India were analyzed by spoligotyping, MIRU-VNTR, large deletion PCR typing and single nucleotide polymorphism analysis (SNP). The Central Asian (CAS) 1 _DELHI sub-lineage was the most prevalent sub-lineage comprising 46.2% (n = 30) of all isolates, with shared-type (ST) 26 being the most dominant genotype comprising 24.6% (n = 16) of all isolates. Other sub-lineages observed were: East-African Indian (EAI)-5 (9.2%, n = 6), EAI6_BGD1 (6.2%, n = 4), EAI3_IND, CAS and T1 with 6.2% each (n = 4 each), Beijing (4.6%, n = 3), CAS2 (3.1%, n = 2), and X1 and X2 with 1 isolate each. Genotyping results from five isolates (7.7%) did not match any existing spoligopatterns, and one isolate, ST124, belonged to an undefined lineage. Twenty-six percent of the isolates belonged to the TbD1+ PGG1 genogroup. SNP analysis of the pncA gene revealed a CAS-lineage specific silent mutation, S65S, which was observed for all CAS-lineage isolates (except two ST26 isolates) and in 1 orphan. Mutations in the pncA gene, conferring resistance to pyrazinamide, were observed in 15.4% of all isolates. Collectively, mutations in the rpoB gene, the katG gene and in both rpoB and katG genes, conferring resistance to rifampicin and isoniazid, respectively, were more frequent in CAS1_DELHI isolates compared to non-CAS_DELHI isolates (OR: 3.1, CI95% [1.11, 8.70], P = 0.045). The increased frequency of drug-resistance could not be linked to the patients'' history of previous anti-tuberculosis treatment (OR: 1.156, CI95% [0.40, 3.36], P = 0.79). Fifty-six percent of all new tuberculosis patients had mutations in either the katG gene or the rpoB gene, or in both katG and rpoB genes.

Conclusion

CAS1_DELHI isolates circulating in New Delhi, India have a high frequency of mutations in the rpoB and katG genes. A silent mutation (S65S) in the pncA gene can be used as a putative genetic marker for CAS-lineage isolates.  相似文献   

19.
The human IgG1 antibody subclass shows distinct properties compared with the IgG2, IgG3, and IgG4 subclasses and is the most exploited subclass in therapeutic antibodies. It is the most abundant subclass, has a half-life as long as that of IgG2 and IgG4, binds the FcγR receptor, and activates complement. There is limited structural information on full-length human IgG1 because of the challenges of crystallization. To rectify this, we have studied the solution structures of two human IgG1 6a and 19a monoclonal antibodies in different buffers at different temperatures. Analytical ultracentrifugation showed that both antibodies were predominantly monomeric, with sedimentation coefficients s20,w0 of 6.3–6.4 S. Only a minor dimer peak was observed, and the amount was not dependent on buffer conditions. Solution scattering showed that the x-ray radius of gyration Rg increased with salt concentration, whereas the neutron Rg values remained unchanged with temperature. The x-ray and neutron distance distribution curves P(r) revealed two peaks, M1 and M2, whose positions were unchanged in different buffers to indicate conformational stability. Constrained atomistic scattering modeling revealed predominantly asymmetric solution structures for both antibodies with extended hinge structures. Both structures were similar to the only known crystal structure of full-length human IgG1. The Fab conformations in both structures were suitably positioned to permit the Fc region to bind readily to its FcγR and C1q ligands without steric clashes, unlike human IgG4. Our molecular models for human IgG1 explain its immune activities, and we discuss its stability and function for therapeutic applications.  相似文献   

20.

Background

The presentation of new influenza A(H1N1) is broad and evolving as it continues to affect different geographic locations and populations. To improve the accuracy of predicting influenza infection in an outpatient setting, we undertook a comparative analysis of H1N1(2009), seasonal influenza, and persons with acute respiratory illness (ARI) in an outpatient setting.

Methodology/Principal Findings

Comparative analyses of one hundred non-matched cases each of PCR confirmed H1N1(2009), seasonal influenza, and ARI cases. Multivariate analysis was performed to look for predictors of influenza infection. Receiver operating characteristic curves were constructed for various combinations of clinical and laboratory case definitions. The initial clinical and laboratory features of H1N1(2009) and seasonal influenza were similar. Among ARI cases, fever, cough, headache, rhinorrhea, the absence of leukocytosis, and a normal chest radiograph positively predict for both PCR-confirmed H1N1-2009 and seasonal influenza infection. The sensitivity and specificity of current WHO and CDC influenza-like illness (ILI) criteria were modest in predicting influenza infection. However, the combination of WHO ILI criteria with the absence of leukocytosis greatly improved the accuracy of diagnosing H1N1(2009) and seasonal influenza (positive LR of 7.8 (95%CI 3.5–17.5) and 9.2 (95%CI 4.1–20.3) respectively).

Conclusions/Significance

The clinical presentation of H1N1(2009) infection is largely indistinguishable from that of seasonal influenza. Among patients with acute respiratory illness, features such as a temperature greater than 38°C, rhinorrhea, a normal chest radiograph, and the absence of leukocytosis or significant gastrointestinal symptoms were all positively associated with H1N1(2009) and seasonal influenza infection. An enhanced ILI criteria that combines both a symptom complex with the absence of leukocytosis on testing can improve the accuracy of predicting both seasonal and H1N1-2009 influenza infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号