首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the short-term metabolic processes of arsenate for 24 h in a freshwater unicellular green alga, Chlamydomonas reinhardtii wild-type strain CC-125. The arsenic species in the algal extracts were identified by high-performance liquid chromatography/inductively coupled plasma mass spectrometry after water extraction using a sonicator. Speciation analyses of arsenic showed that the levels of arsenite, arsenate, and methylarsonic acid in the cells rapidly increased for 30 min to 1 h, and those of dimethylarsinic acid and oxo-arsenosugar-glycerol also tended to increase continuously for 24 h, while that of oxo-arsenosugar-phosphate was quite low and fluctuated throughout the experiment. These results indicate that this alga can rapidly biotransform arsenate into oxo-arsenosugar-glycerol for at least 10 min and then oxo-arsenosugar-phosphate through both reduction of incorporated arsenate to arsenite and methylation of arsenite and/or arsenate retained in the cells to dimethylarsinic acid via methylarsonic acid as an possible intermediate.  相似文献   

2.
Uptake kinetics of arsenic species in rice plants   总被引:35,自引:0,他引:35  
Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.  相似文献   

3.
Phosphate uptake by phosphate-starved Euglena   总被引:4,自引:0,他引:4  
Phosphate-deprived Euglena acquire the ability to rapidly in-corporate added phosphate and, also, synthesize an induced acid phosphatase localized in the pellicle. The phosphate uptake system is saturated at low concentrations of phosphate and is inhibited by dinitrophenol, by low temperature, by K+, Li+, and Na+ ions, and competitively by arsenate. The orthophosphate incorporated into the cell is rapidly converted into organic forms but enough remains unesterified to suggest that the uptake is an active transport process. The data do not rule out the possibility that the induced phosphatase is involved in the transport process.  相似文献   

4.
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis–Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis–Menten kinetics. Arsenite influx was well described by the two parameter model of ‘Michaelis–Menten’ kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA.  相似文献   

5.
Properties of the fully developed phosphate transport system in the fertilized egg of the sea urchin, Strongylocentrotus purpuratus, were investigated. The rates of phosphate transport at concentrations of external phosphate of 1 to 44 μM, both in the absence and in the presence of 100 μM arsenate, exhibit typical saturation kinetics. At sea water concentrations of 2 μM phosphate, the rate of uptake is about 2 × 10?9 μm/egg/minute at 15°C. Arsenate is a competitive inhibitor of phosphate transport, fully and immediately reversible in its effects, yielding Ki values ranging from 10.5 to 14.1 × 10?6 M in comparison to the corresponding apparent KM (Michaelis-Menten) constants for phosphate of 5.6 to 7.5 × 10?6 M (pH 8.0, 15°C). The rate of arsenate uptake in a phosphate deficient medium amounts to 2.8 to 2.9 × 10?10 μm arsenate/egg/minute at an arsenate concentration of 2.9 to 10.2 μM arsenate (HAsO4??), which is 9.5 and 5.6% of the rate of phosphate uptake at corresponding phosphate concentrations. Arsenate has essentially the same developmental effects at initial concentrations of 5–10 μM and 100 μM arsenate, namely no observable effects for exposure periods of 7.5 hours, although longer periods result in blockage of development at the early blastula stage. Outward flux of phosphate ions cannot be demonstrated by washing prelabelled eggs with sea water containing low or high concentrations of phosphate, even when phosphorylation has been blocked by exposing the eggs to a metabolic inhibitor. Phosphate uptake rates measured in the pH range from 5.0 to 10.0 reveal a sharp optimum at pH 8.8–8.9. Reference to the apparent pK' values of the phosphoric acid system indicate that the entering species is the HPO4?? ion. The effects on rates of phosphate uptake of exposure to sea water at pH values between 7 and 10 for 30 minute periods are fully reversible, but at lower pH values, reversal is delayed, and is only partial. Sodium molybdate (0.01 M), sodium pyrophosphate (1.5 × 10?4 M), and adenosine triphosphate (1–5 × 10?4 M) for exposure periods ranging from 40 to 180 minutes did not significantly affect phosphate uptake. Omission of Ca++ ion from artificial sea water is without effect on phosphate uptake but the absence of both Ca++ and Mg++ results in profound and irreversible depression of both phosphate uptake and development. The data of this and the following paper are consistent with the conclusion that the transport of phosphate involves a surface located carrier. The apparent secondary and tertiary ionization constants of phosphoric acid in sea water (ionic strength = 0.6885) were measured, resulting in a value for pK′2 = 6.14 and for pK′3 = 10.99, at 15°C and phosphate at infinite dilution.  相似文献   

6.
Four kinds of soil material were used in a pot experiment with velvetgrass (Holcus lanatus). Two unpolluted soils: sand (S) and loam (L) were spiked with sodium arsenite (As III) and arsenate (As V), to obtain total arsenic (As) concentrations of 500 mg As kg?1. Two other soils (ZS I, ZS III), containing 3320 and 5350 mg As kg?1, were collected from Zloty Stok where gold and arsenic ores were mined and processed for several centuries. The effects of phosphate addition on plants growth and As uptake were investigated. Phosphate was applied to soils in the form of NH4H2PO4 at the rate 0.2 g P/kg. Average concentrations of arsenic in the shoots of velvetgrass grown in spiked soils S and L without P amendment were in the range 18–210 mg As kg?1 d.wt., whereas those in plants grown on ZS I and ZS II soils were considerably lower, and varied in the range 11–52 mg As kg?1 d.wt. The addition of phosphate caused a significant increase in plant biomass and therefore the total amounts of As taken up by plants, however, the differences in As concentrations in the shoots of velvetgrass amended and non-amended with phosphate were not statistically significant.  相似文献   

7.
Tu  Cong  Ma  Lena Q. 《Plant and Soil》2003,249(2):373-382
Arsenate and phosphate interactions are important for better understanding their uptake and accumulation by plant due to their similarities in chemical behaviors. The present study examined the effects of arsenate and phosphate on plant biomass and uptake of arsenate and phosphate by Chinese brake (Pteris vittata L.), a newly-discovered arsenic hyperaccumulator. The plants were grown for 20 weeks in a soil, which received the combinations of 670, 2670, or 5340 mol kg–1 arsenate and 800, 1600, or 3200 mol kg–1 phosphate, respectively. Interactions between arsenate and phosphate influenced their availability in the soil, and thus plant growth and uptake of arsenate and phosphate. At low and medium arsenate levels (670 and 2670 mol kg–1), phosphate had slight effects on arsenate uptake by and growth of Chinese brake. However, phosphate substantially increased plant biomass and arsenate accumulation by alleviating arsenate phytotoxicity at high arsenate levels (5340 mol kg–1). Moderate doses of arsenate increased plant phosphate uptake, but decreased phosphate concentrations at high doses because of its phytotoxicity. Based on our results, the minimum P/As molar ratios should be at least 1.2 in soil solution or 1.0 in fern fronds for the growth of Chinese brake. Our findings suggest that phosphate application may be an important strategy for efficient use of Chinese brake to phytoremediate arsenic contaminated soils. Further study is needed on the mechanisms of interactive effects of arsenate and phosphate on Chinese brake in hydroponic systems.  相似文献   

8.
Abstract

A Potentiometric titration method was used to study the adverse effect of arsenate (As(V)) and arsenite (As(III)) on inorganic carbon uptake in suspensions of the green alga Scenedesmus obliquus. The measurements were performed in a closed CO2-system with diluted synthetic seawater (1‰ salinity) as ionic medium. Usually, the algal chlorophyll concentration was 0.4 mg dm?3, while the arsenate- and arsenite-concentrations were varied within the limits 0.1 to 200 μmol dm?3. In some experiments arsenate toxicity was studied in the presence of 1 to 100 μmol dm?3 of phosphate (P(V)).

With concentrations of arsenate or arsenite less than 0.1 μmol dm?3 no toxic effects were observed. However, at As-concentrations of 200 μmol dm?3, the algal carbon uptake was reduced by 41% with arsenate and 29% with arsenite, i.e., arsenate is more toxic to Scenedesmus obliquus than arsenite. The toxicity of arsenate was negligible in the presence of a ten fold excess of phosphate. This is probably due to chemical similarities between arsenate and phosphate causing competition between the ions for the binding sites.

The importance of taking the speciation as well as the buffer capacity of the algal system into account, when calculating the carbon uptake, is also discussed.  相似文献   

9.
Arsenic pollution and eutrophication are both prominent issues in the aquaculture ponds of Taiwan. It is important to study the effects of arsenic on algal growth and toxin production in order to assess the ecological risk of arsenic pollution, or at least to understand naturally occurring ponds. The sensitivity of algae to arsenate has often been linked to the structural similarities between arsenate and phosphate. Thus, in this study we examined the effects of arsenate (10−8 to 10−4 M) on Microcystis aeruginosa TY-1 isolated from Taiwan, under two phosphate regimes. The present study showed that M. aeruginosa TY-1 was arsenate tolerant up to 10−4 M, and that this tolerance was not affected by extracellular phosphate. However, it seems that extracellular phosphate contributed to microcystin production and leakage by M. aeruginosa in response to arsenate. Under normal phosphate conditions, total toxin yields after arsenate treatment followed a typical inverted U-shape hormesis, with a peak value of 2.25 ± 0.06 mg L−1 in the presence of 10−7 M arsenate, whereas 10−8 to 10−6 M arsenate increased leakage of ∼75% microcystin. Under phosphate starvation, total toxin yields were not affected by arsenate, while 10−6 and 10−5 M arsenate stimulated microcystin leakage. It is suggested that arsenate may play a role in the process of microcystin biosynthesis and excretion. Given the arsenic concentrations in aquaculture ponds in Taiwan, arsenate favors survival of toxic M. aeruginosa in such ponds, and arsenate-stimulated microcystin production and leakage may have an impact on the food chain.  相似文献   

10.
Arsenate accumulation and reduction kinetics at both high and low phosphate concentrations were investigated in the green alga Chlorella sp, isolated from the arsenic-contaminated Upper Mystic Lake near Boston, MA. Growth rate, accumulated cellular arsenic, and release of As(III) were determined over a range of arsenate concentrations. Arsenate inhibited growth and reduced final cell yield at high phosphate concentration. However, growth rate, final cell yield, and cellular arsenic content were all enhanced by higher arsenate concentrations in cultures grown at a low concentration of phosphate. The traditional view that phosphate-limited cells are necessarily more sensitive to As(V) toxicity may not be correct. The reduction rates of As(V) by Chlorella sp. obtained in our laboratory were similar to net reduction rates measured in epilimnetic water from the Upper Mystic Lake, demonstrating the importance of phytoplankton in arsenic reduction in freshwater.  相似文献   

11.
An arsenic hyperaccumulator, Pteris vittata L., is common in nature and could occur either on As-contaminated soils or on uncontaminated soils. However, it is not clear whether phosphate transporter play similar roles in As uptake and translocation in nonmetallicolous and metallicolous populations of P. vittata. Five populations were used to investigate effects of phosphate on arsenate uptake and translocation in the plants growing in 1.2 L 20% modified Hoagland's nutrient solution containing either 100 μM phosphate or no phosphate and 10 μM arsenate for 1, 2, 6, 12, 24 h, respectively. The results showed that the nonmetallicolous populations accumulated apparently more As in their fronds and roots than the metallicolous populations at both P supply levels. Phosphate significantly (P < 0.01) decreased frond and root concentrations of As during short time solution culture. In addition, the effects of phosphate on As translocation in P. vittata varied among different time-points during time-course hydroponics (1–24 h). The present results indicated that the inhibitory effect of phosphate on arsenate uptake was larger in the three nonmetallicolous populations than those in the two metallicolous populations of P. vittata.  相似文献   

12.
The effects of arsenate on the growth characteristics of five isolates of the freshwater alga, Chlorella vulgaris Beij., were examined. Two field isolates originated from arsenic-contaminated sites in Yukon, Canada and Kyushi, Japan; two reference isolates were obtained from the University of Texas Culture Collection. One isolate was selected for arsenic-tolerance in the laboratory. All five strains survived in culture solutions containing high arsenate concentrations. Arsenate (1–25 mM As) reduced photosynthesis and cell growth, as reflected by induced lag periods, slower growth rates, and lower stationary cell yields. Field isolates had shorter lag periods, higher growth rates, and enhanced cell yields compared to lab isolates when exposed to the same arsenic concentrations. Growth of the phosphorus-limited field strains was stimulated by the addition of arsenic. The cell yield of phosphorus-limited C. vulgaris Yukon, when treated with arsenic, was two times that of the phosphorus-limited control. This pattern was not evident when photosynthesis was used as a measure of cell response.  相似文献   

13.
We examined the short-term metabolic processes of arsenate for 24 h in a freshwater unicellular green alga, Chlamydomonas reinhardtii wild-type strain CC-125. The arsenic species in the algal extracts were identified by high-performance liquid chromatography/inductively coupled plasma mass spectrometry after water extraction using a sonicator. Speciation analyses of arsenic showed that the levels of arsenite, arsenate, and methylarsonic acid in the cells rapidly increased for 30 min to 1 h, and those of dimethylarsinic acid and oxo-arsenosugar-glycerol also tended to increase continuously for 24 h, while that of oxo-arsenosugar-phosphate was quite low and fluctuated throughout the experiment. These results indicate that this alga can rapidly biotransform arsenate into oxo-arsenosugar-glycerol for at least 10 min and then oxo-arsenosugar-phosphate through both reduction of incorporated arsenate to arsenite and methylation of arsenite and/or arsenate retained in the cells to dimethylarsinic acid via methylarsonic acid as an possible intermediate.  相似文献   

14.
Arsenate is a toxic compound that has been connected with neuropathies and impaired cognitive functions. To test whether arsenate affects the viability and the GSH metabolism of brain astrocytes, we have used primary astrocyte cultures as model system. Incubation of astrocytes for 2 h with arsenate in concentrations of up to 10 mM caused an almost linear increase in the cellular arsenic content, but did not acutely compromise cell viability. The presence of moderate concentrations of arsenate caused a time- and concentration-dependent loss of GSH from viable astrocytes which was accompanied by a matching increase in the extracellular GSH content. Half-maximal effects were observed for arsenate in a concentration of about 0.3 mM. The arsenate-induced stimulated GSH export from astrocytes was prevented by MK571, an inhibitor of the multidrug resistance protein 1. Exposure of astrocytes to arsenite increased the specific cellular arsenic content and stimulated GSH export to values that were similar to those observed for arsenate-treated cells, while dimethylarsinic acid was less efficiently accumulated by the cells and did not modulate cellular and extracellular GSH levels. The observed strong stimulation of GSH export from astrocytes by arsenate suggests that disturbances of the astrocytic GSH metabolism may contribute to the observed arsenic-induced neurotoxicity.  相似文献   

15.
The pink yeast Rhodotorula rubra of marine origin was found to be capable of extended growth at very low phosphate concentrations (K(0.5) = 10.8 nm). Average intracellular phosphate concentrations, based on isotope exchange techniques, were 15 to 200 nm, giving concentration gradients across the cell envelope of about 10(6). Sensitivity to metabolic inhibitors occurred at micromolar concentrations. Inability of the phosphate transport system, K(s) = 0.5 to 2.8 mum, V(max) = 55 mumoles per g of cells per min, to discriminate against arsenate transport led to arsenate toxicity at 1 to 10 nm, whereas environmental arsenate levels are reportedly much higher. Phosphate competitively prevented arsenate toxicity. The K(i) for phosphate inhibition of arsenate uptake was 0.7 to 1.2 mum. Phosphate uptake experiments showed that maximal growth rates could be achieved with approximately 4% of the total phosphate-arsenate transport system. Organisms adapted to a range both of concentration of NaCl and of pH. Maximal affinity for phosphate occurred at pH 4 and at low concentrations of NaCl; however, V(max) for phosphate transport was little affected. Maximal specific growth rates on minimal medium were consistent in batch culture but gradually increased to the much higher rates found with yeast extract media when the population was subjected to long-term continuous culture with gradually increasing dilution rates. Phosphate initial uptake rates that were in agreement with the steady-state flux in continuous culture were obtained by using organisms and medium directly from continuous culture. This procedure resulted in rates about 500 times greater than one in which harvested batch-grown cells were used. Discrepancies between values found and those reported in the literature for other organisms were even larger. Growth could not be sustained below a threshold phosphate concentration of 3.4 nm. Such thresholds are explained in terms of a system where growth rate is set by intracellular nutrient concentrations. Threshold concentrations occur in response to nutrient sinks not related to growth, such as efflux and endogenous metabolism. Equations are presented for evaluation of growth rate-limiting substrate concentrations in the presence of background substrate and for evaluating low inhibitor concentration inhibition mechanisms by substrate prevention of inhibitor flux.  相似文献   

16.
A Gram-negative anaerobic bacterium, Citrobacter sp. NC-1, was isolated from soil contaminated with arsenic at levels as high as 5,000 mg As kg−1. Strain NC-1 completely reduced 20 mM arsenate within 24 h and exhibited arsenate-reducing activity at concentrations as high as 60 mM. These results indicate that strain NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations. Strain NC-1 was also able to effectively extract arsenic from contaminated soils via the reduction of solid-phase arsenate to arsenite, which is much less adsorptive than arsenate. To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated using washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. This may be advantageous during bioremediation processes in which both contaminants are present.  相似文献   

17.
A newly discovered arsenate-reducing bacterium, strain OREX-4, differed significantly from strains MIT-13 and SES-3, the previously described arsenate-reducing isolates, which grew on nitrate but not on sulfate. In contrast, strain OREX-4 did not respire nitrate but grew on lactate, with either arsenate or sulfate serving as the electron acceptor, and even preferred arsenate. Both arsenate and sulfate reduction were inhibited by molybdate. Strain OREX-4, a gram-positive bacterium with a hexagonal S-layer on its cell wall, metabolized compounds commonly used by sulfate reducers. Scorodite (FeAsO42· H2O) an arsenate-containing mineral, provided micromolar concentrations of arsenate that supported cell growth. Physiologically and phylogenetically, strain OREX-4 was far-removed from strains MIT-13 and SES-3: strain OREX-4 grew on different electron donors and electron acceptors, and fell within the gram-positive group of the Bacteria, whereas MIT-13 and SES-3 fell together in the ɛ-subdivision of the Proteobacteria. Together, these results suggest that organisms spread among diverse bacterial phyla can use arsenate as a terminal electron acceptor, and that dissimilatory arsenate reduction might occur in the sulfidogenic zone at arsenate concentrations of environmental interest. 16S rRNA sequence analysis indicated that strain OREX-4 is a new species of the genus Desulfotomaculum, and accordingly, the name Desulfotomaculum auripigmentum is proposed. Received: 22 October 1997 / Accepted: 16 June 1997  相似文献   

18.
Phosphoenolpyruvate carboxylase from Amaranthus viridis leaves was activated by inorganic orthophosphate in a concentration- and pH-dependent manner. Maximal activation at pH 7.0 was achieved at phosphate concentrations above 20 mM, and a positive cooperativity was observed for the binding of the anion at this pH. At pH 8.0 the maximum of activity was achieved at 10 mM phosphate; higher concentrations reduced the activation. KM for phosphoenolpyruvate-Mg at pH 7.0 was lowered by phosphate in all concentrations tested up to 30 mM. While at pH 8.0 the KM values were lower than that of the control up to 10 mM phosphate; higher anion concentrations raised the minimum value of KM at this pH. VMAX increased at pH 7.0, and remained unchanged at pH 8.0. A KA value of 0.41 mM was calculated for phosphate at the alkaline pH. The phosphate analogue arsenate also behaved as an activating agent, while other anions (e.g. nitrate, nitrite, sulfate, tetraborate) were ineffective. The phosphate-activated enzyme was shown to be insensitive to glucose-6-phosphate, but was inhibited by l -malate to the same extent as the control.  相似文献   

19.
Lactococcus lactis is a potential host for production of recombinant proteins, especially of therapeutic importance. However, in glucose-grown cultures, lowering of pH due to accumulation of lactic acid and the concomitant induction of acid tolerance response (ATR) may affect the recombinant protein produced. In this work, we have analyzed the effect of culture pH and the associated ATR on production of recombinant streptokinase. Streptokinase gene was cloned and expressed as a secretory protein in L. lactis under the control of P170 promoter. It was found to undergo degradation to form inactive products leading to low productivity. The extent of degradation and productivity of streptokinase was greatly influenced by the development of ATR, which was dependent on the pH of the culture and initial phosphate concentration of the medium. It was found that high pH and high initial phosphate concentration leads to suppression of ATR and this results in at least 2.5-fold increase in streptokinase productivity and significant decrease in degradation of streptokinase.  相似文献   

20.
The sodium pump of human red blood cells mediates a Rb:Rb exchange that is dependent for maximal rates upon the simultaneous presence of intracellular ATP (or ADP) and phosphate. We have measured ouabain-sensitive 86Rb uptake into resealed ghosts of human red cells containing ADP and show that arsenate will substitute for phosphate in supporting the Rb:Rb exchange transport mode. The concentration dependence of arsenate-supported Rb:Rb exchange in ghosts containing 2 mM ADP shows both activating and inhibiting phases; the dependence upon phosphate shows similar characteristics. Elevation of the external [Rb] lowers the apparent affinity for arsenate since there is a shift to higher concentrations of arsenate in the activating and inhibiting phases of the arsenate concentration dependence curve. Similarly, elevation of [ADP] substantially reduces the inhibition of Rb:Rb exchange observed at higher [arsenate]. These effects are also observed in phosphate-supported Rb:Rb exchange. The phosphate requirement for Rb:Rb exchange involves phosphorylation of the sodium pump protein; the close agreement between the effects of arsenate and phosphate in supporting Rb:Rb exchange makes it likely that arsenylation of the sodium pump occurs during Rb:Rb exchange. Arsenate efflux from red blood cell ghosts into arsenate-free chloride medium is partially inhibited (77-80%) by DNDS (4,4'-dinitro-2,2'-stilbenedisulfonic acid), this compares with 82-87% inhibition by DNDS of phosphate efflux under the same conditions. It appears that Band III, the red cell anion transport system, accepts arsenate in a similar fashion to phosphate and that a fraction of the flux of both anions may occur through pathways other than Band III. Thus, in human red blood cells, both the sodium pump and the anion exchange transport system will accept arsenate as a phosphate congener and the protein-arsenate interactions are very similar to those with phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号