首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased mortality of juvenile Atlantic salmon (Salmo salar L.), related to lowered levels of stored energy following the loss of ice cover during winter, has been observed after hydropower development in the subarctic River Alta, northern Norway. Drift samples were compared to examine if drift densities, and thus drift prey availabilities for juvenile salmon, were lower in the ice-free than the ice-covered area. In addition, juvenile salmon stomach contents were compared to benthos and drift in the ice-free area to examine salmon winter feeding habitat. Zooplankton, originating from the reservoir, dominated drift at the ice-free site but had lower densities at the downstream ice-covered site. Excluding zooplankton, Chironomidae comprised most of the remaining drift at both the ice-free and ice-covered site, followed by Ephemeroptera, Plecoptera and Simuliidae. No Trichoptera were found in the drift samples. There was no consistent diel periodicity in drift. Benthos was dominated by Chironomidae, followed by Ephemeroptera, Plecoptera and Trichoptera. Other invertebrates occurred in low numbers. Juvenile salmon demonstrated size-selective feeding and fed mainly on Ephemeroptera, followed by Trichoptera and Plecoptera. No zooplankton and few Chironomidae were found in the stomach samples. Stomach content was more similar to benthos than to drift, indicating a larger extent of benthic than drift feeding. No evidence was found for the hypothesis that lack of ice cover reduced the invertebrate drift or caused diel periodicity in the drift. Differences in drift between areas with and without ice could not account for the observed differences in mortality of juvenile salmon during the winter in these areas.  相似文献   

2.
Twenty stations were sampled monthly during the Ice free period (June-September) in 1972. Emergence traps, emptied daily, were also employed. The major macroinvertebrates in the exposed zone were Ephemeroptera, Gammarus lacustris , Trichoptera, Chironomidae, Plecoptera and Coleoptera, and these constituted over 90% of total numbers. Densities of G. lacustris , Ephemeroptera, Tipulidae and Plecoptera showed a positive correlation with detritus. No significant relationship was found for the other taxa. Nearly 70% of the fauna emerged, and did so during the period from June to September. Chironomidae, Ephemeroptera, Plecoptera, Trichoptera and Tipulidae accounted for nearly all emergence and their total average annual emergence was 372 cal m−2. Of this total, Chironomidae constituted 28%, Ephemeroptera 28%, Plecoptera and Trichoptera 15% each and Tipulidae 4%.  相似文献   

3.
1. A massive aquifer between the Gerstle, Tanana and Delta rivers in interior Alaska receives water from them and from smaller streams that flow from the Granite Mountains in the Alaska Range, Groundwater from the aquifer intersects the surface in a mid-sized (20m3s?1× 10%) spring-fed stream, Clearwater Creek. 2. Mean annual air temperature is about -2.6°C. However, even in winter when air temperature often reaches —40°C, the stream does not form a complete ice cover. Water temperature ranges from 0 to 7.8°C. Specific conductance and the concentrations of major ions vary little throughout the year, and summed ionic salinity exceeds 250 mg1-?1. 3. Benthic algal standing crop (as chlorophyll a) was at least an order of magnitude higher than that in a nearby surface-water stream, the upper Chena River, Standing crop peaked in spring and autumn (about 20mgm?2) and averaged about half this value, although biomass of an early spring bloom of Hydrurus foetid us was underestimated. 4. Algal standing crop was inversely related to the concentrations of inorganic nitrogen and orrhophosphate-phosphorus in the water column. The ratio of total nitrogen to total phosphorus (as mass concentrations) was always about 30. Measurements of primary production made in Clearwater Creek were among the highest reported for streams in subarctic Alaska. 5. Macroinvertebrate diversity in Clearwater Creek was low. Numbers of ‘morpho-species’ in monthly Surber samples (0.09m2) averaged nine, and ranged from three to fourteen. However, benthos and drift densities were similar to those reported from other Alaskan streams. In early spring and autumn, drifting macroinvertebrates were primarily Ephemeroptera, Plecoptera and Trichoptera, but in summer, Diptera dominated the drift. The low diversity of macroinvertebrates is hypothesized to be a consequence of the small annual range in water temperature and the relatively constant discharge of Clearwater Creek.  相似文献   

4.
Invertebrate drift in a large, braided New Zealand river   总被引:1,自引:0,他引:1  
1. The spatio-temporal patterns of drifting macroinvertebrates in a large, braided New Zealand river were determined by sampling with drift nets, seasonally, for 1 year. 2. Drift densities were greatest in autumn, and at night in all seasons except winter. A greater proportion of larger animals drifted at night than during the day in all seasons. Mean annual drift densities were ninety-six animals 100m?3 and 47 mg dry weight 100 m?3. 3. There were relatively few taxa in the drift, and the mayfly Deleatidium spp. comprised more than 85% of the drifting aquatic invertebrates in all seasons except autumn. Chironomidae and terrestrial forms were the only other groups to occur at densities of more than one animal 100 m?3 in all seasons. 4. Drift density was positively correlated with benthic density, which in turn was adversely affected by floods, particularly during spring and summer.  相似文献   

5.
Investigations on invertebrate fauna were carried out at fifteen sites in some chosen streams of the Caucasus (Azerbaijan SSR) in March 1970. Seventy-five taxa of invertebrates were found in the investigated streams. Chironomidae constituted the most numerous group at all sites, Ephemeroptera, Plecoptera, and Simuliidae being other important components of the fauna. On the basis of percentage structure of dominance in the examined streams four types of faunistic communities were distinguished. The most common one was the type characteristic of high mountain streams and rivers with Diamesa sp. (gr. latitarsis) predominant. Nevertheless, in springtime this community was characterized by a greater number of taxa and a greater abundance of specimens as compared with the summer period. It may be thus assumed that the spring period in high mountain streams and rivers is more conducive to the development of the invertebrate fauna.  相似文献   

6.
Invertebrate drift in a glacial river and its non-glacial tributary   总被引:1,自引:0,他引:1  
1. Invertebrate drift was studied in a glacially fed river and a non-glacial tributary in western Norway. Samples were taken during two consecutive 24-h periods in May, July and October 1997. The 3 months are characterized by snowmelt, ice melt and rainfall runoff, respectively. The main glacial river has colder, more turbid water, especially during the period of maximum ice melt during summer.
2. Chironomidae, especially the genus Diamesa , dominated the drift in the main river in May and October, constituting 97 and 99% of total numbers, respectively. Simuliidae, Plecoptera, Ephemeroptera and Trichoptera were the other main components.
3. A comparison of drift and benthos data revealed that the tributary was of little significance for colonization of the main glacial river. Only some additional species in very low numbers were recorded downstream of the confluence.
4. During July significant differences in diel drift pattern of Chironomidae and Simuliidae existed between the glacial and non-glacial reaches. There was a mid-day peak independent of discharge in the glacial river, but this peak was not noted in the tributary. Species of the genus Diamesa appear to be adapted for daytime drift, possibly evolved through the absence of predators and competitors that are typical of rhithral systems where nocturnal drift is more usual.  相似文献   

7.
Studies of macroinvertebrate communities in thermal streams are highly geographically localized and mostly faunistical, making the efforts to understand in situ water thermal regime effects on those biocoenoses barely achievable. We examined the effects of geothermal water inflow on benthic macroinvertebrate community composition in a temperate stream. Environmental data analysis has shown that water temperature is a major factor determining the faunistical composition, especially downstream of the geothermal water inflow situated some 20 m upstream of locality V3. The increase in mean annual water temperature from 11.5±4.1 °C at locality V2 to 22.0±5.0 °C at locality V3 induced an enormous shift in community composition from a diverse one, composed mainly of Gammaridae, Simuliidae, Chironomidae, Trichoptera and Ephemeroptera, and to a lesser extent of Plecoptera, Coleoptera, other Diptera, Hirudinea, Odonata, Mollusca and Oligochaeta, to a uniform one strongly dominated by Chironomidae, Mollusca and Oligochaeta, comprising 98.9±0.5% of collected individuals. While the disappearance of Plecoptera and Ephemeroptera and the increase in representation of Mollusca and Oligochaeta at locality V3 might be solely explained by water temperature increase, in the case of Chironomidae the increase in water discharge and relatively high annual water temperature variation at locality V3 had additional positive effects. However, the latter factor induced disappearance of Gammaridae at locality V3. In addition to the increase in water temperature, increase of water velocity significantly determined the longitudinal dynamics of Coleoptera.  相似文献   

8.
Macroinvertebrate drift in the upper Wye catchment,Wales   总被引:4,自引:4,他引:0  
Drift samples collected at five sites in the upper catchment of the River Wye yielded 99 taxa (excluding Chironomidae and Simuliidae). Significantly fewer taxa were collected from a site on the impounded River Elan (W4) compared with nearby River Wye sites. Mean daily density of drifting macroinvertebrates ranged from 6.3 × 10-2 to 782.9 × 10-2m-3, with greatest densities during the summer months, and Ephemeroptera, Coleoptera and Diptera generally comprised the greatest proportion of animals collected. Chironomids formed a considerable proportion of collections at W4 and the relative abundance of ephemeropterans, coleopterans and trichopterans was generally significantly less at W4 than at other sites. Estimates of the total numbers of invertebrates drifting past each site varied from 8.3 × 103 to 1 373.1 × 103day-1. Total numbers drifting were significantly related to estimates of total benthic density and similar relationships were established for some major taxonomic groups and some species.  相似文献   

9.
SUMMARY. The Cow Green dam was completed in the summer of 1970 and invertebrate drift was sampled below the dam and in an adjacent tributary, Maize Beck, on thirty-one occasions between July 1970 and September 1973. Drift was sampled by pumping river water through a filter. The intake was placed in Maize Beck for the first sample and in the Tees for the second, and so on alternately for the rest of the sampling period. Nets were used on ten occasions, nine of these in winter months and once when the pump broke down. A total of ninety-five taxa were recognized, of which eighty-six occurred in Maize Beck and seventy-one in the Tees. The Tees fauna was dominated numerically and in terms of biomass by a large population of micro-crustaceans originating in the reservoir. Hydra and Naididae also formed a large proportion of the Tees drift but contributed little to the biomass. Ephemeroptera were most abundant in Maize Beck samples. Diptera were abundant in drift catches in both streams with simuliid larvae most numerous in Maize Beck and chironomid larvae most numerous in the Tees. The greatest drift densities of the benthic fauna were observed between April and October; the mean number of organisms per 10 m3 were seventy-three in Maize Beck and 144 in the Tees. The mean densities in winter were very low, respectively two and seventeen per 10 m3 in the two rivers. There was no significant difference between the mean levels of the total bottom fauna (numbers and biomass) in the drift in the two rivers during the period April-October, but vrtnter biomass was significantly greater in the Tees. In July 1970 micro-crustaceans represented 29% (14 per 10 m3) of total drift numbers and 3% (0.7 mg wet-weight per 10 m3) of the biomass, whereas in 1973 they represented 99% of both the numbers (37 670 per 10 m3) and weight (2.2 g wet-weight per 10 m3). The relation between benthos and drift was examined. In the drift Plecoptera and Baetidae were more abundant in Maize Beck than in the Tees. Only Chironomidae and Nais spp. were more abundant in the Tees, In the benthos the density of Plecoptera and Baetidae was not significantly different in the two rivers, but all other groups with the exception of Simuliidae occurred at greater densities in the Tees. The proportion of baetids present in the drift was greatest in Maize Beck. No such difference was demonstrated for total fauna. Diel rhythms were observed in baetids and simuhids with densities greater in night catches. Nocturnal peaks of these organisms were less pronounced in the Tees. Chironomid larvae showed no diel changes in abundance. Significant diel changes in the mean weights of individual animals were not detected in baetid nymphs or chironomids. Micro-crustaceans showed no nocturnal peaks of abundance. Preliminary observations on the quality and quantity of seston caught in drift samples between April and October showed great differences between the rivers. In the Tees the bulk ofeach sample consisted of algal filaments derived from the river and micro-crustaceans from the reservoir. In Maize Beck algae were un-common and the sample was composed of peat and mineral particles. Data are presented on seston output at different discharges.  相似文献   

10.
In this study we quantified invertebrate drift and related it to the structure of the benthic community, over a 6–8 month period, in a 4th-order tropical stream in Costa Rica. Relative to reports from similar-sized temperate and tropical streams, drift densities were high (2-fold greater: mean 11.2 m−3; range 2.5–25 m−3), and benthic insect densities were relatively low (>3-fold lower: mean 890 m−2; range 228–1504 m−2). Drift was dominated by larval shrimps that represented more than 70% of total drift on any given date; the remaining 30% was composed of 54 insect taxa. Among insects, Simuliidae and Chironomidae (Diptera) and Baetidae, Leptohyphes and Tricorythodes (Ephemeroptera) comprised 24% of total drift. Drift periodicity was strongly nocturnal, with peaks at 18:00 h (sunset) and 03:00 h. Our results, and those of previous experiments in the study stream, suggest that nighttime drift is driven by the presence of predatory diurnal drift-feeding fishes and nocturnal adult shrimps. There were no clear seasonal patterns over both ‘dry’ and wet seasons, suggesting that benthic communities are subject to similar stresses throughout the year, and that populations grow and reproduce continuously. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Estimates of age derived from daily ring counts from otoliths and capture rates of larval June sucker Chasmistes liorus were used to determine the relationship between discharge rates of the Provo River and residence time and patterns of larval drift. During 1997, larval drift occurred over a 22 day period when discharge rates were low (mean ±s.d. 3·2 ± 0·0 m3 s?1). In 1998, larval drift occurred in two separate events over a 40 day period. Discharge was higher during the first larval drift period (19 days; 24·8 ± 1·3 m3 s?1) and lower during the second larval drift period (17 days; 7·0 ± 0·9 m3 s?1). In 1997, no larval fish were collected at the lowermost transect on the Provo River (nearest Utah Lake), and few larvae >21 days of age were found. During the first drift period of 1998, larval C. liorus were collected at all transects, and mean age of larvae collected between upstream and downstream transects increased by c. 7 days. During the second drift period of 1998, only a few were collected in the lowermost transects, and age did not increase with proximity to the lake. Patterns in catch and age distribution of larval C. liorus in the lower Provo River suggest that recruitment failure occurs during the larval drift period in years with insufficient discharge to transport larvae into the lake.  相似文献   

12.
1. Aquatic predators may influence drift periodicity either directly or indirectly (by non‐consumptive effects involving chemical cues). We took drift samples (eight successive 3‐h sampling intervals over a 24‐h period) on five dates (September 2007, March, April, June and August 2008). Samples were taken at three sites (one site with trout throughout the year, two sites without trout but with fire salamander larvae as top predators from April to August, but without vertebrate predators during the rest of the year) in a stream near Vienna, Austria, to examine the effects of predators on drift periodicity. 2. Of 45 331 specimens caught, the most abundant taxa were Ephemeroptera (32.3%; mainly Baetidae), Diptera (21.5%; mainly Chironomidae), Amphipoda (17.4%; all Gammarus fossarum), Plecoptera (5.4%), Coleoptera (3.5%) and Trichoptera (1.2%). For more detailed analyses, we chose Ephemeroptera (Baetidae; n = 13 457) and Amphipoda (G. fossarum; n = 7888), which were numerous on all sampling dates. 3. The number of drifting baetids and amphipods, as well as total drift density, was generally higher at night than by day, although without predators these differences were significant for Gammaridae but not for Baetidae. 4. When broken down to size classes, night–day drift ratios generally were not significantly different from equality in all size classes of baetids when larval fire salamanders and trout were absent. When predators were present, however, baetid drift density was usually higher at night, except in the smallest and largest size classes. In all size classes of G. fossarum, drift density was usually higher at night, whether with or without the top predators. 5. Although we could study predator effects on drift periodicity at three sites on only a single stream, it seems that non‐consumptive effects may affect Baetidae. Salamander larvae, most probably via kairomones, induced a shift towards mainly nocturnal drift, which could be interpreted as predator avoidance.  相似文献   

13.
C. J. Williams 《Hydrobiologia》1985,124(3):243-250
200 µm and 50 µm mesh aperture nets were compared with respect to the sampling of the drift of Chironomidae (Diptera) larvae.200 µm mesh drift nets were found to be unsatisfactory for the sampling of chironomid larval drift; such nets seriously underestimated drift density of larvae and distorted the sub-family and instar composition of samples.200 µm mesh drift nets captured larval drift in densities of 1–24 m–3, while pumped samples, filtered through 50 µm mesh aerial nets, indicated densities of 10–1600 m–3. Drift nets also underestimated ephemeropteran drift density.The use of pumps, with 50 µm or smaller mesh aperture aerial nets, is recommended for quantitative and qualitative sampling of chironomid drift, and possibly that of other invertebrates.  相似文献   

14.
Although invertebrate drift is an important ecological process in lotic ecosystems, very little is known about it in Kenyan rivers. The primary aim of this study was to investigate the effect of driftnet mesh size and exposure duration on drift density in 2017. Drift samples were dominated by Chironomidae, Baetidae, Simuliidae, Caenidae and Culicidae. The 100 µm mesh driftnet had the highest mean invertebrate density, followed by the 250 µm and 500 µm nets. Invertebrate drift densities decreased with increased exposure time. This study demonstrates that sampler mesh size and exposure time should be taken into account when characterising invertebrate drift in streams. Future studies should consider sampling different biotopes and during different seasons.  相似文献   

15.
Nested species subsets, gaps, and discrepancy   总被引:10,自引:0,他引:10  
Chemical cues from fish can alter the behaviour of stream invertebrates in experimental tanks but their effect in natural streams has received little attention. By adding brook trout (Salvelinus fontinalis) odour to a trout stream in the Rocky Mountains of Colorado, USA, we tested whether changes in the concentration of chemical cues from visually feeding predatory fish would alter the drift of mayfly nymphs (Ephemeroptera). Stream water was piped from stream-side tanks with (odour) and without (control) three brook trout to two locations in the stream 3.5 m upstream of drift nets at six replicate sites. Five-minute drift samples were collected downstream from odour and control pipes before, during and after the release of water from the tanks into the stream during both the day and night. Almost all drift occurred at night and consisted predominantly of Baetis bicaudatus nymphs. The odour manipulation had no measurable effect on Baetis drift during the day but statistical power was low. During the night, however, the drift of large (>0.65 mm head capsule width, HCW) Baetis nymphs decreased significantly during the odour addition compared to control drift. In contrast, the drift of small nymphs (≤0.65 mm HCW) increased both during and after the odour addition in comparison to control drift. Since the stream contains brook trout (0.04–0.18 m−2), and water from the stream (presumably containing fish odour) altered the behaviour of fishless-stream Baetis nymphs in another experiment, we conclude that the changes in Baetis drift density were a response to an increase in the concentration of fish odour in the stream. Furthermore, we were able to detect the effect within 5 min. of odour addition, indicating that mayfly behavioural response to trout odour was rapid. These results suggest that mayflies can distinguish different concentrations of trout odour in natural streams and that the response is size-specific, according to the relative risk of predation of large and small Baetis. Received: 12 May 1998 / Accepted: 23 October 1998  相似文献   

16.
The species composition of aquatic insects in theboreal stream, Skiftesåa, was investigated usingemergence traps, Malaise traps and kick samples. Atleast 13 Ephemeroptera, 16 Plecoptera, 25 Trichopteraand 120 Chironomidae species were recorded. This faunais representative for non-polluted, northern streams.The production of macrobenthos was estimated to beonly about 1 g dry weight per year and m2,possibly due to the fluctuating flow of water.  相似文献   

17.
Macroinvertebrate drift in a Rocky Mountain stream   总被引:5,自引:4,他引:1  
J. David Allan 《Hydrobiologia》1987,144(3):261-268
An extensive series of drift collections from a Rocky Mountain stream was used to investigate quantitative patterns in the taxonomic composition of drift throughout spring, summer and fall for 1975–1978. Drift was estimated by drift rate, the number of organisms drifting past a point per 24 h; and by drift density, the numbers of organisms collected per 100 m3 of water sampled.Drift densities were up to ten times greater by night than by day, and 24 h drift densities for the total fauna approached 2000 per 100 m3 in June–July, declining to <500 by autumn. Ephemeroptera, and especially Baetis, dominated the drift. Drift rates were greatest in late spring, around 106 per 24 h, which are among the highest values reported for small trout streams. Drift rates declined to <105 during the summer, and shifts in the taxonomic composition are described.Multiple regression analysis of the relationship between drift rate and density, and the independent variables discharge, benthic density and temperature, showed that discharge typically was a significant predictor of 24 h drift rate, usually the best single predictor. In contrast, 24 h drift density most frequently was independent of discharge, indicating that this measure tends to correct for seasonal variation in discharge, as suggested in the literature. However, this was not invariably true. Drift density significantly correlated with benthic density in five of eight taxa inspected, thus seasonal declines in the benthos probably accounted for parallel declines in drift density.  相似文献   

18.
The aim of the study was to compare the physico‐chemical parameters of milt from sea trout (Salmo trutta m. trutta), brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss). Milt was collected by stripping and spermatozoa concentrations, were determined and compared with sperm motility and spermatocrit values along with seminal plasma indices (pH, osmolality, sodium, potassium, chlorine, calcium, magnesium, glucose and protein concentrations). The highest spermatozoa concentration of 22.3 ± 6.7 × 109 ml?1 was found in the sea trout milt, and was significantly different of those observed in brook trout (11.9 ± 3.3 × 109 ml?1) and rainbow trout (10.7 ± 4.4 × 109 ml?1). The values for pH and K+ did not differ significantly among species. The mean pH was 8.0 in the milt of each species and the K+ concentrations ranged from 24.8 ± 7.2 to 30.5 ± 7.6 mm L?1. Considerable differences were determined for the Ca2+ ions concentrations. The highest value was found in sea trout (1.7 ± 0.3 mm L?1), while in the rainbow trout it was 0.7 ± 0.5 and in the brook trout 0.4 ± 0.1 mm L?1. The most pronounced differences were found in the glucose concentration cause of its unnaturally low concentration in rainbow trout of the mean value of 6.0 ± 15.2 mg L?1. The mean value in sea trout and brook trout was 185.0 ± 172.4 and 231.2 ± 148.4 mg L?1 respectively. For all species, protein mean values were below 1.3 g L?1. The mean osmolality was between 230.6 ± 98.6 and 272.0 ± 26.4 mOsm kg?1 in the species studied. No correlation was found between any components determined in milt and the spermatozoa motility (P > 0.05). The sperm concentration was positively correlated with the protein content in the milt of the three species studied, other less exhibited correlation was found.  相似文献   

19.
We investigated recolonization by insects of a small headwater stream in the southern Appalachian Mountains that was treated along its entire length with an insecticide (methoxychlor). Initial treatment (December 1985) resulted in massive insect drift. Applications continued seasonally for three years, and drift was measured during each treatment. Taxonomic composition of the drift indicated several responses: (1) Some taxa were eliminated. (2) A number of taxa occurred only sporadically following initial treatment. (3) Early instars for some taxa showed seasonal occurrences which closely paralleled known life cycles and flight periods of adults. Groups which provided strong evidence for aerial recolonization included several Ephemeroptera, Plecoptera (Peltoperlidae and Isoperla spp.), and Trichoptera (Parapsyche cardis, Diplectrona modesta, Pycnopsyche spp., and Lepidostoma spp.). (4) Some long-lived taxa survived and exhibited distinct growth through several treatment periods. These include Odonata (Lanthus and Cordulegaster), some Ephemeroptera, and some Diptera (Tipulidae, Ceratopogonidae, and Tanypodinae). (5) Some taxa which were not present at the time of initial treatment appeared during the experiment. Chironomidae dominated the drift in all samples, and the number of genera did not decrease during the three-year treatment period. Of the 27 chironomid genera identified, only Micropsectra decreased in proportional abundance during treatment. In contrast, several genera (Corynoneura, Meropelopia, Parametriocnemus, and Tvetnia) showed little change in relative abundance. Larsia (Tanypodinae) increased in proportional abundance during the treatment period.  相似文献   

20.
A total of 12277 benthic invertebrates were caught from November 1990 to October 1991 at the Mauerbach, a first to fourth order forest brook near Vienna, Austria, using a Surber sampler and a hand net. Five taxa comprised 96.6% of the catch: Diptera larvae (45.6%), Amphipoda (37.6%) and larvae of Ephemeroptera (6.4%), Plecoptera (5.3%) and Trichoptera (1.7%). Mean values of macrozoobenthos density ranged from 39514 specimens m−2 at upstream sampling site 5 in December to only 286 specimens m−2 at sampling site 3 in May, shortly after a severe flood. Based on benthic invertebrate population structure, sites 5 and 6 (situated near the source) were clearly separated from the downstream sites 1 to 4. At upstream sites, shredders comprised up to 71.7% of the total, whereas at downstream sites collectors were most abundant. In addition, the proportion of eucrenal species decreased from 12% at site 6 near the source to only 2% at site 1 near the mouth. Among the insect species studied in detail, most were univoltine except Ephemera danica (Ephemeroptera) and Sericostoma personatum (Trichoptera), which had a two-year life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号