首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

2.
Kinetic studies of a microsomal (Na++ K++ Mg2+)ATPase from sugar beet roots ( Beta vulgaris L. cv. Monohill) show that sucrose influences the MgATPase in different ways depending on the presence of K+ and/or Na+ 1) In the presence of the substrate MgATP and Na+ the effect of sucrose follows simple Michaelis-Menten kinetics. 2) In the presence of substrate together with K+ or (K++ Na+), sucrose has little effect on the ATPase activity. 3) In the presence of Na+, onabain acts as an uncompetitive inhibitor with respect to MgATP. 4) In the presence of K+ or (K++ Na+), the inhibition by ouabain is somewhat depressed and shows non-linearity when 1/v is plotted versus 1/MgATP. 5) Sucrose and Na+ activate in a competitive way, so that a successive increase of the Na+ level decreases the activation by sucrose. Both Km and V-values are thereby changed. 6) The sucrose activation in the presence of Na+ is also influenced by ouabain. It is, therefore, suggested that Na+ may regulate the interference between the Na+/K+ pump and a sucrose sensitive system.  相似文献   

3.
Low-K+, high-Na+ cells of strain RL21a of Neurospora crassa , in steady state with 25 m M Na+, were used to study K+/Na+ exchanges in the presence or absence of Ca2+ and Mg2+. In the presence of Ca2+ and Mg2+, a low concentration of K+ (0.3 m M ) triggered a rapid exchange, but in the absence of the divalents, a high K+ concentration (30 m M ) was required to initiate the exchange at a rapid rate. In the absence of Ca2+ and Mg2+, K+ uptake did not occur at low K+ concentration, internal K+ did not regulate Na+ influx in the presence of external K+, and the efflux of Na+ proceeded at maximum activity at very low-K+ contents.  相似文献   

4.
A purified plasmalemma preparation from roots of Plantago major L. ssp. pleiosperma (Pilger) was obtained by the two-phase partitioning method, using 6.5% (w/w) of Dextran T-500 and polyethylene glycol 3350, respectively. The distribution of murker enzymes proved the purity of the plasmalemma fraction. The ATPase activity was characterized by determining its sensitivity to anions, cations and inhibitors. The Mg2+-dependent ATPase activity peaked at pH 7.25, K+-stimulation at pH 6.75, and the Cl -stimulation both at pH 6.75 and 7.5 (all in the presence of 3 m M MgSO4). The plasmalemma preparations hydrolyzed preferentially ATP (in the presence of Mg2+), although they were less specific for ATP at pH 7.5 than at pH 6.75. The Cl - stimulated ATPase is probably associated with and located on the plasmalemma. The question if the Cl -stimulated activity is due to an ATPase distinct from the classical K+-stimulated ATPase is considered.  相似文献   

5.
To clarify the reaction mechanism of a (Na++ K++ Mg2+)ATPase activity in sugar beet roots ( Beta vulgaris L. cv. Monohill) phloridzin, oligomycin (inhibitors of animal ATPases) and metavanadate (NH4VO3) have been used. Kinetic studies showed that: 1) Phloridzin inhibition is uncompetitive with respect to MgATP and not influenced by Na+ or K+. 2) This inhibition is only found in preparations made in the absence of sucrose. 3) Oligomycin and vanadate inhibit the ATPase in different ways. Omission of sucrose from the preparation medium favours vanadate inhibition but suppresses oligomycin inhibition. 4) The kinetic pattern of the Na+ activation of the ATPase differs in preparations made in the absence and presence of sucrose, but that of K+ activation is the same. – These results indicate that inclusion as against omission of sucrose from the preparation medium causes a conformational change of the membrane fragments/vesicles, which then expose different surfaces to the surrounding medium.  相似文献   

6.
Using excised roots of Atriplex hortensis L., cv. Gelbe Gartenmelde, the uptake, accumulation and xylem transport of K+ and Na+ have been measured. Influx as well as xylem transport proved to discriminate little between K+ and Na+, when considered in relation to the external solution. Both K+ and Na+ inhibited the uptake and xylem transport of each other to about the same degree. Measurements of intracel-lular Na+ fluxes by means of compartment analysis indicated that the low degree of K/Na discrimination during uptake was due to low influx selectivity. Moreover, K+/Na+ exchange at the plasmalemma was not very efficient in Atriplex roots. In order to establish the basis of the low K/Na discrimination in xylem transport, the rates of K+ and Na+ transport were related to the cytoplasmic K+ and Na+ concentrations to yield the selectivity ratio of transport, S(transport) = (φcx(K) × [Na+]c)/(φcx(Na) × [K+]c). Under all conditions this ratio was far below one indicating that Na+ was favoured during xylem release in excised roots of Atriplex at low external concentrations. The implications of this discrimination in favour of Na+ are discussed with respect to salt tolerance of A. hortensis .  相似文献   

7.
Abstract. Kosteletzkya virginica (L.) Presl., a dicot halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m 3 NaCl, and the effects of external salinity on root growth, ion and water levels, and lipid content were examined in successive harvests. Root growth paralleled shoot growth trends, with some enhancement observed at 85 mol m 3 NaCl and a reduction noted at the higher salinities. Root Na+ content increased with increasing external NaCl, but remained constant with time for each treatment. K+ content, although lower in salt-grown plants after 14 d salinization, subsequently increased to levels comparable to unsalinized plants. A strong K+ affinity was reflected in the increased K+/Na+ selectivity of salt-grown plants and by their low Na+/K+ ratios. Cl levels rose in salinized plants and values were double or more those for Na+, indicating the possibility of a sodium-excluding mechanism in roots. Root phospholipids and sterols, principal membrane constituents, were maintained or elevated and the free sterol/phospholipids ratio increased in salinized K. virginica plants, suggesting retention of overall membrane structure and decreased permeability. This response, considered in light of root calcium maintenance and high potassium levels, suggests that salinity-induced changes in membrane lipid composition may be important in preventing K+ leakage from cells.  相似文献   

8.
Abstract. Kosteletzkya virginica (L.) Presl., a dicotyledonous halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m-3 NaCl, and the effects of external salinity on shoot growth and ion content of individual leaves were studied in successive harvests. Growth was stimulated by 85 mol m-3 NaCl and was progressively reduced at the two higher salinities. Growth suppression at high salinity resulted principally from decreased leaf production and area, not from accelerated leaf death. As is characteristic of halophytic dicots. K. virginica accumulated inorganic ions in its leaves, particularly Na+ and K+. However, the Na+ concentration of individual leaves did not increase with time, but remained constant or even declined, seeming to be well-coordinated with changes in water content. A striking feature of the ion composition of salinized plants was the development of a dramatic gradient in sodium content, with Na+ partitioned away from the most actively growing leaves. Salt-treated plants exhibited a strong potassium affinity, with foliar K+ levels higher in salinized plants than unsalinized plants after an initial decrease. These results suggest that selective uptake and transport, foliar compartmentation of Na+ and K+ in opposite directions along the shoot axis, and the regulation of leaf salt loads over time to prevent build-up of toxic concentrations are whole-plant features which enable K. virginica to establish favourable K+-Na+ relations under saline conditions.  相似文献   

9.
Red beet ( Beta vulgaris L., cv. Detroit Dark Red) plasma membrane ATPase solubilized from a deoxycholate-extracted plasma membrane fraction with Zwittergent 3–14 was reconstituted into liposomes. Detergent removal and reconstitution was carried out by column chromatography on Sephadex G-200 followed by centrifugation at 100 000 g for I h. Prior to reconstitution, optimal activity in the solubilized preparation was observed when dormant red beet tissue was used in the extraction/solubilization procedure. Following reconstitution into liposomes, ATP-dependent proton transport could be demonstrated by measuring the quenching of acridine orange fluorescence. Proton transport and ATPase activity in the reconstituted enzyme preparation were inhibited by orthovandate but stimulated by KNO3. This stimulation most likely results from a reduction in the membrane potential generated during electrogenic proton transport by the reconstituted ATPase. The ATPase activity of the reconstituted ATPase was further characterized and found to have a pH optimum of 6.5 in the presence of both Mg2+ and K+. The activity was specific for ATP, insensitive to ouabain and azide but inhibited by N;N-dicyclohexylcarbodiimide and diethylstilbestrol. Stimulation of ATP hydrolytic activity occurred in the sequence: K+ Rb+ Na+ Cs+ Li+ and the kinetics of K+ stimulation of ATPase activity followed non-Michaelis-Menten kinetics as observed for both the membrane-bound and solubilized forms of the enzyme. Reconstitution of the plasma membrane ATPase from red beet allowed a substantial purification of the enzyme and resulted in the enrichment of a 100 kDa polypeptide representing the ATPase catalytic subunit.  相似文献   

10.
When Notothenia neglecta was exposed to diluted, half strength, sea water for 6 h or 10 days, serum concentrations of Cl-, Na+, K+ and Mg2+ did not differ from those of sea water controls. This indicates that the fish were capable of both short- and long-term regulation. Renal Na+,K+-ATPase activity decreased after a 6 h exposure to diluted sea water, but there were no differences between diluted sea water and controls after 10 days of exposure.  相似文献   

11.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

12.
The concentrations of the main plasma inorganic electrolytes Na+, K+, Ca2+, Mg2+, Cl- and and PO43- have been determined for different orders of marine fishes. For Na+ and Cl- a typical decrease was found when passing from cyclostomes, holocephalans and elasmobranchs to teleosts. The concentrations of K+, Ca2+ and Mg2+ showed a similar trend except that there was a rise in the teleost group, which showed a large range of variation for these three ions. In the case of PO43- no significant differences between groups were found.  相似文献   

13.
SYNOPSIS Changes in the amounts of Na+, K+, Mg2+ and Ca2+ were determined in the supernates of homogenized samples of Tetrahymena cells which were exposed to 7 heat shocks. The amounts of the same ions were also determined in the pH 4.5-soluble fractions after dialysis. During the last shock, i.e., 6.5 hr after the start of heat treatment, there was a change in the ion balance characterized by a gain in Na+, Ca2+ and non-dialyzable Mg2+ and a loss of K+. The change was not in phase with the synchronous cell division.  相似文献   

14.
Isolated epidermal protoplasts of Commelina communis L. increase in volume in the presence of KCl. Since this swelling is an osmotic phenomenon it reflects K+ influx. ATP slightly decreased the volume of the protoplasts, pointing towards the possibility that K+ uptake is passive. On the other hand abscisic acid (ABA) and sodium orthovanadate increased the swelling, and their effect was reversed by ATP. This may support the suggestion that ABA inhibits the active and ATPase-mediated relase of K+ from epidermal cells. Mg2+-dependent, K+-stimulated ATPase activity was found in the microsomal fraction from epidermal cells. This activity was vandadate sensitive. ABA increased the basal activity in the presence of Mg2+ but inhibited the K+ stimulation.  相似文献   

15.
A yeast strain carrying disruptions in TRK1 and ENA genes was very sensitive to Na+ because uptake discriminated poorly between K+ and Na+, and Na+ efflux was insignificant. Transformation with TRK1 and ENA1 restored discrimination, Na+ efflux and Na+ tolerance. Increasing external Ca2+ increased Na+ tolerance almost in the same proportion in TRK1 enal cells and in trkl ENAI cells, suggesting an unspecific effect of this cation. By using a vacuolar ATPase mutant, the role of the vacuole in Na+ tolerance was also demonstrated. The yeast model of Na+ exclusion and Na+ tolerance may be extended to plants.  相似文献   

16.
Channel catfish, Ictalurus punctatus Rafinesque, injected intraperitoneally with 2-methyl-quinoline sulphate (QdSO4) or 3-trifluoromethyl-4-nitrophenol (TFM) eliminate most of the dose of these compounds by extra-renal routes. Patterns of renal excretion of Na+, K+, Ca2+, Mg2+, and Cl (ρEq kg−1 h−1) appeared to be associated with the 'stress' of the urine collection technique rather than with the elimination of either compound. Concentrations of Na+, K+, Ca2+, Mg2+, and Cl (mEq/1) were determined in urine, plasma and gall bladder bile.  相似文献   

17.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   

18.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

19.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

20.
SUMMARY. We have analysed data from ninety-nine Scottish freshwater lochs, to explore the relationship between water chemistry and phytoplankton assemblages. Our results confirm that there are strong correlations both between the phytoplankton quotient and divalent cation concentrations, particularly Ca++, and also between the phytoplankton quotient and the (Na++ K+)/(Ca+++ Mg++) ratio. However, the latter is evidently a spurious relationship, arising from the former association, together with an association between Ca++ and the (Na++K+)/ (Ca+++ Mg++) ratio. The observed correlation does not persist if account is taken of concomitant variations in the Ca++concentration. This conclusion is suggested both by relatively informal analyses (median polish, partial correlation coefficients) and by more formal modelling and testing (stepwise regression, all-subsets regression).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号