首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Konings, Appl. Environ. Microbiol. 56:526-532, 1990). The L. lactis pepN gene appeared to complement an E. coli strain carrying a mutation in its pepN gene. High-level expression of the pepN gene in E. coli was obtained by using the T7 system. The overproduction of the 95-kDa aminopeptidase N could be visualized on sodium dodecyl sulfate-polyacrylamide gels and immunoblots. Cloning of the pepN gene on a multicopy plasmid in L. lactis resulted in a 20-fold increase in lysyl-aminopeptidase activity that corresponded to several percent of total protein. Nucleotide sequence analysis of the 5' region of the pepN gene allowed a comparison between the deduced and determined amino-terminal primary sequences of aminopeptidase N. The results show that the amino terminus of PepN is not processed and does not possess the characteristics of consensus signal sequences, indicating that aminopeptidase N is probably an intracellular protein. The intracellular location of aminopeptidase N in L. lactis was confirmed by immunogold labeling of lactococcal cells.  相似文献   

2.
3.
For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.  相似文献   

4.
The general aminopeptidase PepN from Streptococcus thermophilus A was purified to protein homogeneity by hydroxyapatite, anion-exchange, and gel filtration chromatographies. The PepN enzyme was estimated to be a monomer of 95 kDa, with maximal activity on N-Lys-7-amino-4-methylcoumarin at pH 7 and 37 degrees C. It was strongly inhibited by metal chelating agents, suggesting that it is a metallopeptidase. The activity was greatly restored by the bivalent cations Co2+, Zn2+, and Mn2+. Except for proline, glycine, and acidic amino acid residues, PepN has a broad specificity on the N-terminal amino acid of small peptides, but no significant endopeptidase activity has been detected. The N-terminal and short internal amino acid sequences of purified PepN were determined. By using synthetic primers and a battery of PCR techniques, the pepN gene was amplified, subcloned, and further sequenced, revealing an open reading frame of 2,541 nucleotides encoding a protein of 847 amino acids with a molecular weight of 96,252. Amino acid sequence analysis of the pepN gene translation product shows high homology with other PepN enzymes from lactic acid bacteria and exhibits the signature sequence of the zinc metallopeptidase family. The pepN gene was cloned in a T7 promoter-based expression plasmid and the 452-fold overproduced PepN enzyme was purified to homogeneity from the periplasmic extract of the host Escherichia coli strain. The overproduced enzyme showed the same catalytic characteristics as the wild-type enzyme.  相似文献   

5.
M Foglino  S Gharbi  A Lazdunski 《Gene》1986,49(3):303-309
  相似文献   

6.
The nucleotide sequence of the pepN gene from Lactococcus lactis encoding a zinc-metallo aminopeptidase has been determined. The open reading frame of 2,538 base pairs encodes a protein with a calculated M(r) of 95,368, which agrees with the apparent M(r) of 95,000 of the gene product which was identified by polyclonal antibodies raised against the purified aminopeptidase. The amino acid sequence of the aminopeptidase of L. lactis was found to be similar to the corresponding enzymes of human, rat and mouse, with almost 30% of the residues identical. Also, a highly conserved area was identified which has similarity with the active site of thermolysin. A zinc-binding site, as well as the catalytic site for PepN, is predicted to lie within this conserved stretch. Putative promoter regions upstream of PepN were confirmed by primer extension analysis.  相似文献   

7.
A gene coding for an aminopeptidase (PepC) from Lactococcus lactis subsp. cremoris AM2 was cloned by complementation of an Escherichia coli mutant lacking aminopeptidase activity. The nucleotide sequence was determined. A portion of the predicted amino acid sequence of PepC (436 amino acids) showed strong homology to the active site of cysteine proteases. No signal sequence was found, indicating an intracellular location of the enzyme.  相似文献   

8.
Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified X-PDAP activity in E. coli clones. The fragment was also able to confer X-PDAP activity on Bacillus subtilis. The fact that none of these organisms contain this enzymatic activity indicated that the structural gene for X-PDAP had been cloned. The cloned fragment fully restored X-PDAP activity in X-PDAP-deficient mutants of L. lactis. We have sequenced a 3.8-kb fragment that includes the X-PDAP gene and its expression signals. The X-PDAP gene, designated pepXP, comprises 2,289 nucleotide residues encoding a protein of 763 amino acids with a predicted molecular weight of 87,787. No homology was detected between pepXP and genes that had been previously sequenced. A second open reading frame, divergently transcribed, was present in the sequenced fragment; the function or relationship to pepXP of this open reading frame is unknown.  相似文献   

9.
Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified X-PDAP activity in E. coli clones. The fragment was also able to confer X-PDAP activity on Bacillus subtilis. The fact that none of these organisms contain this enzymatic activity indicated that the structural gene for X-PDAP had been cloned. The cloned fragment fully restored X-PDAP activity in X-PDAP-deficient mutants of L. lactis. We have sequenced a 3.8-kb fragment that includes the X-PDAP gene and its expression signals. The X-PDAP gene, designated pepXP, comprises 2,289 nucleotide residues encoding a protein of 763 amino acids with a predicted molecular weight of 87,787. No homology was detected between pepXP and genes that had been previously sequenced. A second open reading frame, divergently transcribed, was present in the sequenced fragment; the function or relationship to pepXP of this open reading frame is unknown.  相似文献   

10.
The Lactococcus lactis subsp. lactis 712 lacG gene encoding phospho-beta-galactosidase was isolated from the lactose mini-plasmid pMG820 and cloned and expressed in Escherichia coli and L. lactis. The low phospho-beta-galactosidase activity in L. lactis transformed with high-copy-number plasmids containing the lacG gene contrasted with the high activity found in L. lactis containing the original, low-copy-number lactose plasmid pMG820, and indicated that the original lactose promoter was absent from the cloned DNA. In E. coli the phospho-beta-galactosidase could be overproduced using the strong inducible lambda PL promoter, which allowed a rapid purification of the active enzyme. The complete nucleotide sequence of the L. lactis lacG gene and its surrounding regions was determined. The deduced amino acid sequence was confirmed by comparison with the amino acid composition of the purified phospho-beta-galactosidase and its amino-terminal sequence. This also allowed the exact positioning of the lacG gene and identification of its characteristic Gram-positive translation initiation signals. The homologous expression data and the sequence organization of the L. lactis lacG gene indicate that the gene is organized into a large lactose operon which contains an intergenic promoter located in an inverted repeat immediately preceding the lacG gene. The organization and sequence of the L. lactis lacG gene were compared with those of the highly homologous lacG gene from Staphylococcus aureus. A remarkable bias for leucine codons was observed in the lacG genes of these two species. Heterogramic homology was observed between the deduced amino acid sequence of the L. lactis phospho-beta-galactosidase, that of the functionally analogous E. coli phospho-beta-glucosidase, and that of an Agrobacterium beta-glucosidase (cellobiase).  相似文献   

11.
12.
13.
14.
A new set of primers was developed allowing the specific detection of the pepN gene (coding for alanine aminopeptidase) from Gram-negative bacteria. The primers were designed in silico by sequence alignments based on available DNA sequence data. The PCR assay was validated using DNA from selected pure cultures. The analysis of gene libraries from extracted DNA from different soil samples revealed a high diversity of pepN related sequences mainly related to α-Proteobacteria. Most sequences obtained from clone libraries were closely related to already published sequences (<80% homology on amino acid level), which may be related to the conserved character of the amplified region of pepN. By linking the diversity data obtained by the clone library studies to potential enzymatic activities of alanine aminopeptidase, lowest diversity of pepN was found in those soil samples which displayed lowest activity levels, which confirms the importance of diversity for the ecosystem function mainly when transformation processes of complex molecules are studied.  相似文献   

15.
AIMS: To use promoters and regulatory genes involved in the production of the bacteriocin sakacin P to obtain high-level regulated gene expression in Lactobacillus plantarum. METHODS AND RESULTS: In a plasmid containing all three operons naturally involved in sakacin P production, the genes encoding sakacin P and its immunity protein were replaced by the aminopeptidase N gene from Lactococcus lactis (pepN) or the beta-glucuronidase gene from Escherichia coli (gusA). The new genes were precisely fused to the start codon of the sakacin P gene and the stop codon of the immunity gene. This set-up permitted regulated (external pheromone controlled) overexpression of both reporter genes in L. plantarum NC8. For PepN, production levels amounted to as much as 40% of total cellular protein. CONCLUSIONS: Promoters and regulatory genes involved in production of sakacin P are suitable for establishing inducible high-level gene expression in L. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: This study describes a system for controllable gene expression in lactobacilli, giving some of the highest expression levels reported so far in this genus.  相似文献   

16.
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.  相似文献   

17.
18.
A 16-kb BamHI fragment of the lactose plasmid pNZ63 from Leuconostoc lactis NZ6009 was cloned in Escherichia coli MC1061 by using pACYC184 and was found to express a functional beta-galactosidase. Deletion and complementation analysis showed that the coding region for beta-galactosidase was located on a 5.8-kb SalI-BamHI fragment. Nucleotide sequence analysis demonstrated that this fragment contained two partially overlapping genes, lacL (1,878 bp) and lacM (963 bp), that could encode proteins with calculated sizes of 72,113 and 35,389 Da, respectively. The L. lactis beta-galactosidase was overproduced in E. coli by using a lambda pL expression system. Two new proteins with M(r)s of 75,000 and 36,000 appeared upon induction of PL. The N-terminal sequences of these proteins corresponded to those deduced from the lacL and lacM gene sequences. Mutation and deletion analysis showed that lacL expression is essential for LacM production and that both the lacL and lacM genes are required for the production of a functional beta-galactosidase in E. coli. The deduced amino acid sequences of the LacL and LacM proteins showed considerable identity with the sequences of the N- and C-terminal parts, respectively, of beta-galactosidases from other lactic acid bacteria or E. coli. DNA and protein sequence alignments suggest that the L. lactis lacL and lacM genes have been generated by an internal deletion in an ancestral beta-galactosidase gene.  相似文献   

19.
The pepA gene, encoding a protein with leucine aminopeptidase activity, was isolated from Rickettsia prowazekii, an obligate intracellular parasitic bacterium. Nucleotide sequence analysis revealed an open reading frame of 1,502 bp that would encode a protein of 499 amino acids with a calculated molecular weight of 53,892, a size comparable to that of the protein produced in Escherichia coli minicells containing the rickettsial gene. Also, heat-stable leucine aminopeptidase activity was demonstrable in an E. coli peptidase-deficient strain containing R. prowazekii pepA. Comparison of the amino acid sequence of the R. prowazekii PepA with the characterized leucine aminopeptidases from E. coli, Arabidopsis thaliana, and bovine eye lens revealed that 39.8, 34.9, and 34.0% of the residues were identical, respectively. Residues proposed to be part of the active site or involved in the binding of metal ions in the bovine metalloenzyme were all conserved in R. prowazekii PepA. However, despite the structural and enzymatic similarity to E. coli PepA, the R. prowazekii protein was unable to complement the cer site-specific, PepA-dependent recombination system found in E. coli that resolves ColE1-type plasmid multimers into their monomeric forms.  相似文献   

20.
M T McCaman  J D Gabe 《Gene》1986,48(1):145-153
The complete nucleotide sequence has been determined for the pepN gene of Escherichia coli K-12. The product of this gene, peptidase N, is apparently 870 amino acids in length. The coding sequence is followed by a tandem pair of stop codons and then a sequence capable of forming a stem-and-loop structure in the pepN mRNA. In the process of subcloning the pepN gene we constructed a plasmid which causes peptidase N to be produced at a level of 50% of total protein. The peptidase is fully active and completely soluble and these overproducing cells appear otherwise normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号