首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histidinol dehydrogenase from three differing revertants of ICR-191A-induced frameshift hisD3018 has been purified and examined for amino acid replacements. The enzyme from one spontaneously arising revertant, R7, contains an extra proline residue, whereas that from another, R5, contains an extensive frameshifted sequence, four amino acid residues of which have been identified to date. The amino acid replacement data are in agreement with the in vitro code word assignments and allow the characterization of the hisD3018 frameshift as an addition of one nucleotide pair, most likely guanine plus cytosine. Enzymatic data for those ICR-191A-induced revertants of hisD3018 arising within the hisD gene indicate that the enzyme is wild type and, therefore, that ICR-191A can cause deletions as well as additions of single base pairs. The wild-type amino acid sequence is restored in enzyme from an N-methyl-N′-nitro-N-nitrosoguanidine (NG)-induced revertant, R29, suggesting that NG is a base-deleting as well as a base-substituting mutagen. The unusual response of hisD3018 to external suppressors is considered in terms of reinitiation of protein synthesis out of phase, coupled with suppression of a nonpermissive missense codon so generated, and of an alternative hypothesis invoking a true frameshift suppressor transfer ribonucleic acid with an extended or deleted anticodon.  相似文献   

2.
WE have reported our original finding of frameshift suppression in Salmonella1,2. The frameshift we studied initially was induced in the histidinol dehydrogenase (HDH) gene with the intercalating agent ICR-191 (ref. 3.) It is a +1 type most likely containing an extra C in an mRNA repeat of C residues2. External suppressors are efficiently induced by ICR-191 (ref. 1). The suppressors restore small amounts of HDH with the normal amino-acid sequence to the mutant cell4. We have hypothesized a proline suppressor tRNA with a quadruplet (+G) anticodon or its functional equivalent2,4. Prompted by our findings, Riddle and Roth showed that most frameshifts tentatively classified as +1 types by genetic criteria are externally suppressible. Almost all were induced with ICR-191 (ref. 5). Two classes of suppressible frameshift were found, each with a set of mutually exclusive suppressors5. Judging from the demonstrated capacity of ICR compounds to produce + 1 additions in DNA repeats of GC pairs, we have further suggested to Riddle and Roth that these two frameshift-suppressor systems represent +1 additions in RNA repeats of C residues (proline codons, glycine anticodons) and in RNA repeats of G residues (glycine codons, proline anticodons)4 (personal communication to J. R. Roth, Histidine Workshop, 1970); that is, the two types of +1 frameshift are genetic “isomers”, the one involving proline and the other glycine (Fig. 1). The recent demonstration by Riddle and Roth of altered proline tRNA and glycine tRNA in appropriate suppressed strains6 is consistent with this suggestion. Further characterization of frameshifts of the type originally investigated has implicated a proline mRNA quadruplet, CCCg, as a sufficient if not necessary condition for suppression7,8. A requirement for neighbouring sequences, particularly chain terminating codons, cannot be completely ruled out, however8. I have now examined a suppressible frameshift of the second type and present evidence that it contains a +1 addition in or near a glycine codon (Fig. 2). Oddly enough, this mRNA site is followed by an extensive nucleotide sequence reminiscent of two out of three +1 “proline” sequences examined (Fig. 2)8. The ICR compounds seem to have a marked bias for inducing suppressible +1 frameshifts in this extensive sequence. Whether some property of this extensive sequence is crucial to suppression is not yet clear.  相似文献   

3.
An attempt to assess the frequencies of mutations of the base-pair substitution type and of the addition/deletion type was undertaken in 64 ICR-170-, 28 MNNG- and 50 EMS-induced ad-1 mutant strains of Schizosaccharomyces pombe.By using temperature sensitivity, osmotic remediability, and interallelic complementation, sensitivity to nonsense suppressors and revertibility tests with 2-methoxy- 6-chloro-9-[3-(ethyl-2-chloroethyl)aminopropylamino]acridine dihydrochloride (ICR-170) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) as diagnostic criteria to distinguish between the two types of alterations, the following conclusions were reached: (1) The mutational alteration in all of the MNNG-induced and in at least 74% of the ethyl methanesulfonate(EMS)-induced mutant strains is of the base-pair substitution type; (2) Both types of mutation were found amongst ICR-170-induced strains.  相似文献   

4.
A genetic and sequence analysis of 373 ICR-191-induced mutations in the lacI gene of Escherichia coli reveals that 365 of the mutations (97·9%) are frameshifts involving the addition or deletion of a single
base-pair from a
sequence including, in one case, a
sequence. Some of the remaining eight mutations (2·1%) represent the loss or gain of a
base-pair from a
sequence. Certain mutational sites are relative hotspots for ICR-191-induced mutations, and we have analyzed the role of surrounding sequences on relative mutation rates. The preference for +1 frameshifts or ?1 frameshifts is site-specific, so that at some sites +1 frameshifts predominate by a 10:1 ratio, whereas at other sites ?1 frameshifts are favored by an approximately 2:1 ratio. The characterized frameshift mutations in lacI described here are useful for constructing systems to detect other frameshift and deletion mutations.  相似文献   

5.
L5178Y mouse lymphoblastic leukemia cells are auxotrophic for l-asparagine (ASN) and have been widely used as a model system for studies on l-asparagine independence, were treated with known chemical mutagens to investigate the molecular basis of this mutation. Mutagens which primarily induce base pair substitutions—ethyl methanesullfonate (EMS) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)—as well as those which induce frame-shift mutations (the acridine half-mustards ICR-372 and ICR-191) each increased the frequency of ASN+ cells in treated cultures to at least ten times the usual background frequency of 1 to 2 ASN+ cells per 106 cells. The effectiveness of both classes of mutagens indicates that the change to asparagine prototrophy might occur by a mechanism other than, or in addition to, reversion of a specific base pair, point mutation. The mutability of this easily assayed nutritional genetic marker in a cell line that can be grown either in vitro or in vivo may provide a useful system for assay of other agents of unknown mutagenic potential.  相似文献   

6.
The effects of post-treatments with caffeine in G2 on the frequency of chromosomal aberrations induced by thiotepa, mitomycin C and N-methyl-N-nitro-N′-nitrosoguanidine were studied in human lymphocytes. Caffeine was found to potentiate the frequency of chromatid aberrations induced by all 3 S-dependent agents tested; the most striking enhancement being obtained when caffeine was present during the last 1.5 h before harvesting. Post-treatments in G2 with 3-aminobenzamide had no influence on the aberration frequency induced by thiotepa and N-methyl-N-nitro-N′-nitrosoguanidine.  相似文献   

7.
Chattoo BB  Palmer E  Ono B  Sherman F 《Genetics》1979,93(1):67-79
A total of 358 lys2 mutants of Saccharomyces cerevisiae have been characterized for suppressibility by the following suppressors: UAA and UAG suppressors that insert tyrosine, serine or leucine; a putative UGA suppressor; an omnipotent suppressor SUP46; and a frameshift suppressor SUF1–1. In addition, the lys2 mutants were examined for phenotypic suppression by the aminoglycoside antibiotic paromomycin, for osmotic remediability and for temperature sensitivity. The mutants exhibited over 50 different patterns of suppression and most of the nonsense mutants appeared similar to nonsense mutants previously described. A total of 24% were suppressible by one or more of the UAA suppressors, 4% were suppressible by one or more of the UAG suppressors, while only one was suppressible by the UGA suppressor and only one was weakly suppressible by the frameshift suppressor. One mutant responded to both UAA and UAG suppressors, indicating that UAA or UAG mutations at certain rare sites can be exceptions to the specific action of UAA and UAG suppressors. Some of the mutants appeared to require certain types of amino acid replacements at the mutant sites in order to produce a functional gene product, while others appeared to require suppressors that were expressed at high levels. Many of the mutants suppressible by SUP46 and paromomycin were not suppressible by any of the UAA, UAG or UGA suppressors, indicating that omnipotent suppression and phenotypic suppression need not be restricted to nonsense mutations. All of the mutants suppressible by SUP46 were also suppressible by paromomycin, suggesting a common mode of action of omnipotent suppression and phenotypic misreading.  相似文献   

8.
The mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine to Salmonella typhimurium hisG46 was enhanced by pre-incubating the chemical with bacteria in sodium phosphate buffer. Addition of glucose (to 15 mM) to the pre-incubation mixture further enhanced the mutagenicity. Pre-incubation with glucose also increased the mutagenicity of N-methyl-N-nitrosourea. Fructose, galactose, pyruvate and succinate also enhanced the mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine. The effect of glucose was observed with S. typhimurium strains hisG46, TA1975, TA1950, TA1535 and TA100.  相似文献   

9.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

10.
Bacterial bioluminescence was applied to detection of general toxicity (MIT test) and genotoxicity (SOS-lux test) of some chemicals, seawater, and fresh water. The SOS-induced luminescence of E. coli WP2s (cda::luxCDABE) cells was higher than in E. coli C 600 (cda::luxCDABE) at 37°C and pH 6.5. The mutagenic effect of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), mitomycin C, and hydrogen peroxide determined from the induction of E. coli WP2s cell luminescence was detected at lower concentrations than in the assessment of reversion frequencies. General toxicity was demonstrated by using luminescence inhibition for hydrogen peroxide, Zn2+, and Cd2+ at low concentrations. Regions of the Krasnodar Krai where sea and fresh waters exerted toxic action on luminescence were determined by the microbioluminescent method.  相似文献   

11.
The reaction rates were determined at 25 and 37° of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) with a number of nucleophiles in water. The rate of the primary reaction step was dependent on the nucleophilicity and the basicity of the attacking nucleophile. The relative rates of reaction of the alkylating intermediate with different nucleophiles were determined and the Swain-Scott substrate constants s were estimated.The rate data are used to discern a connection between chemical reactivity and biological action.  相似文献   

12.
Summary The lethal and mutagenic effects of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS), and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) can be dissociated in a mitomycin C (MTC)-sensitive mutant, strain 302, of Micrococcus radiodurans.As regards lethality 302 is extremely sensitive, compared with the wild type, to MTC and decarbamoyl MTC (DCMTC), slightly sensitive to EMS, MNNG, nitrous acid, 7-bromomethylbenz {} anthracene (BrMBA), and N-acetoxy-N-2-acetylaminofluorene (AAAF), and resistant to MMS, hydroxylamine, and ICR 191G. As regards mutability it is, compared to the wild type, very sensitive to MMS, EMS, and MNNG, and slightly sensitive to hydroxylamine and nitrous acid but not to any other agent examined.Alkaline sucrose gradient studies indicate that 302 does not incise DNA containing BrMBA adducts, although it does incise DNA damaged by AAAF but probably not to the same extent as wild type.We put forward the hypothesis that the hypermutability of 302 is due to the non-removal of bases or nucleotides, modified in exocyclic positions, which have altered base-pairing capabilities, while lethality results from the non-removal of bases or nucleotides, also modified in exocyclic positions, which no longer form hydrogen-bonded base pairs.  相似文献   

13.
Three strains Salmonella typhimurium carrying frameshift mutations affecting the histidine genes (hisC3076, hisD3052 and hisC207) showed increased sensitivity to mutagenesis by ICR-191 (as judged by measuring back mutation to prototrophy), if they were made deficient in excision repair by deleting the uvrB gene. One frameshift strain, hisC3076, also showed increased sensitivity to mutagenesis by ICR-191 when it carried either of two different polA alleles, whereas the hidD305 and hisD207 frameshifts reduced sensitivity to mutagenesis in the presence of these alleles. Studies of spontaneous back mutation to prototrophy revealed siginificant mutator effects of the polA1 mutation on reversion of the hisD3052 frameshift and of the polA3 mutation on reversion of the hisC3076 frameshift. Other smaller mutator effects of the polA alleles on reversion of the his mutations may also be present. In an attempt to explain the complex interactions between different polA alleles and different frameshift mutations, it is tentatively suggested that deletion frameshift may arise mainly during DNA replication, while addition frameshifts may arise mainly during post-replication repair.  相似文献   

14.
Factors and ways in which macromolecules influence the mutation process are considered. An antimutagenic effect is demonstrated in a study of the combined influence of lectins and the alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) on mutagenesis in Chinese hamster cells. Thus, in different schemes of treatment of cells with albumin and MNNG, the experimental frequency of mutations induced by the two agents was statistically reliably lower than the theoretically expected level for their independent combined action. The possibility that there exist common targets and mechanisms through which different types of mutagenic agents act on the cell DNA is discussed.  相似文献   

15.
Linked multiple mutation is observed after treatment of Escherichia coli with methyl methanesulfonate, N-methyl-N′-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and N-ethyl-N-nitro-N-nitrosoguanidine but not ultraviolet light. Induction of linked multiple mutations requires the uvrE+ gene product indicating the involvement of the mismatch repair system. The observation of linked multiple mutations is not due to mutagenesis occurring in a subpopulation of cells. Growing point mutagenesis also occurs after treatment with these mutagens but not with ultraviolet light. It is likely that the excess of mutations observed with these mutagens at growing points is at least partly a relative effect, rather than one due to an absolute increase of reactivity at the DNA growing point region. This relative effect may result from the operation of an inducible repair mechanism which removes O6-alkylguanine residues from the DNA distal to the bacterial growing point. The adaptive response, first described by Robins &; Cairns (1979) prefers O6-methylguanine over O6-ethylguanine.  相似文献   

16.
Yeast cytochrome c peroxidase was used to construct a model for the reactions catalyzed by the second cycle of nitric oxide synthase. The R48A/W191F mutant introduced a binding site for N-hydroxyguanidine near the distal heme face and removed the redox active Trp-191 radical site. Both the R48A and R48A/W191F mutants catalyzed the H2O2 dependent conversion of N-hydroxyguanidine to N-nitrosoguanidine. It is proposed that these reactions proceed by direct one-electron oxidation of NHG by the Fe+4O center of either Compound I (Fe+4O, porph+) or Compound ES (Fe+4O, Trp+). R48A/W191F formed a Fe+2O2 complex upon photolysis of Fe+2CO in the presence of O2, and N-hydroxyguanidine was observed to react with this species to produce products, distinct from N-nitrosoguanidine, that gave a positive Griess reaction for nitrate + nitrite, a positive Berthelot reaction for urea, and no evidence for formation of NO. It is proposed that HNO and urea are produced in analogy with reactions of nitric oxide synthase in the pterin-free state.  相似文献   

17.
The effects of the umuC36 mutation on the induction of base-change and frameshift mutations were studied. An active umuC gene was necessary in either the uvr+ or uvr? strains of Escherichia coli K12 for UV- and X-ray-induced mutations to His+, ColER and SpcR, which are presumably base-change mutations, but it was not essential for ethyl methanesulphonate or N-methyl-N′-nitro-N-nitrosoguanidine-induced His+ mutations. In contrast, only 1 out of 13 trp? frameshift mutations examined was UV reversible, and the process of mutagenesis was umuC+-dependent, whereas a potent frameshift mutagen, ICR191, effectively induced Trp+ mutations in most of the strains regardless of the umu+ or umuC genetic background. These results suggest that base substitutions are a major mutational type derived from the umuC+-dependent pathway of error-prone repair.  相似文献   

18.
Hydroxylamine and N-methylhydroxylamine prevented the activation of soluble guanylate cyclase by the endogenous activator as well as by nitroso compounds such as N-methyl-N′-nitro-N-nitroguanidine or nitroprusside, while the other derivaties of hydroxylamine were ineffective. Hydroxylamine and N-methylhydroxylamine did not alter the basal guanylate cyclase activity of purified enzyme preparations. Kinetics analysis indicated that N-methylhydroxylamine competes with N-methyl-N′nitro-N-nitrosuguanidine for guanylate cyclase. The activation of guanylate cyclase by N-methyl-N′-nitro-N-nitrosoguanidine and its inhibition by N-methylhydroxylamine were reversible reactions. These efects of N-methyl-N′-nitro-N-nitrosoguanine and N-methylhydroxylamine were observed with guanylate cyclase from other tissues.N-Methylhydroxylamine preveneed the increase of guanosine 3′,5′-monophosphate (cyclic GMP) levels in cerebellar slices of guinea pig by N-methyl-N′-nitro-N-nitroguanidine, veratridine and adenosine, while the elevalations of adenosine 3′,5′-monophosphate by these agents were not affected. N-Methylhyroxylamine also blocked the increased of cyclic GMP levels by carbachol, prostaglandin E1 and N-methyl-N′-nitro-N-nitrosoguanidine in neuroblastoma N1E 115 cells. Thus N-methylhydroxylamine prevents the activation of guanylate cyclase and the increased synthesis of cyclic GMP in responses to transmitters without blocking the synthesis of cyclic GMP via basal enzyme activity.  相似文献   

19.
In a previous paper, we presented a practical in vivo micronucleus (MN) test that used rat skin as the target organ. To evaluate the test, as well as to determine the reproducibility and applicability of the method to mice, we used it to test the effect of five skin carcinogens (N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline 1-oxide (4NQO), 7,12-dimethylbenz[a]anthracene (DMBA), and benzo[a]pyrene (B[a]P)) on rat and mouse skin. All five compounds significantly and dose-dependently increased the MN frequencies in the basal cells of the chemical-treated skin. These results indicated the reproducibility of the test results and also the applicability of the test to mice as well as rats.  相似文献   

20.
A mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase (EC 1.6.1.1) was isolated by assaying activity in clones of cells mutagenized with N-methyl-N′-nitro-N-nitrosoguanidine. The mutant is missing both energy-independent and energy-dependent transhydrogenase, but has normal NADH dehydrogenase and ATPase activities. Compared to the parental strain, the mutant has normal growth rates with glucose, glycerol, or succinate aerobically and with glucose or glycerol plus fumarate anaerobically. The aerobic growth yield with limiting glucose concentrations is also normal. These growth properties indicate that the enzyme is not an essential source of NADPH or ATP in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号