首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This immunohistochemical study of luteinizing hormone-releasing hormone (LHRH) in the olfactory bulbs in primates was undertaken in order to see whether there was an LHRH innervation in these species similar to that found in rodents. One old world (Macaca fascicularis) and two new world (Saimiri sciureus and Aotus trivirgatus) monkeys were studied. Aotus trivirgatus was of particular interest as it is noctural and so presumably more dependent upon olfactory cues. Animals were perfused with fixative, olfactory bulbs removed and sectioned, and tissues reacted immunocytochemically using LR1 (Benoit) antiserum to LHRH. Some LHRH innervation was found in the olfactory bulbs of all three species, comprising a few LHRH neurons and many fibers that ramified within the bulbs. The accessory bulb (not present as a distinct entity in old world primates) had more LHRH innervation than did the main olfactory bulb. Aotus trivirgatus had the greatest representation of LHRH of the three species. The layer of the olfactory bulb with the greatest number of LHRH fibers was the external plexiform layer. This is also true in rodents. There is evidence that LHRH has a role in the mediation of olfactory cues in reproductive behavior in rodents. It is not known how LHRH functions within the olfactory system in primates. However, the fact that it is distributed similarly in the two groups suggests that it may serve a similar function.  相似文献   

2.
Estimations of immunoreactive LH-RH and LH in pooled sera of girls, adult women and postmenopausal women have been carried out. The girls were divided into three groups: I--girls aged 2--4 years, II--girls aged 5--8 years and III--girls 9--12 years of age. The estimated concentrations of LH-RH in particular groups were as following: in group I--1.2 +/- 0.2 pg/ml, in group II--2.2 +/- 0.4 pg/ml, in group III 31.0 +/- 4.4 pg/ml, in adult women 6.3 +/- 1.8 pg/ml. and in postmenopausal women 16.6 +/- 2.4 pg/ml. The concentrations of LH in the same groups were 4.3 +/- 0.7; 4.5 +/- 0.8; 11.0 +/- 1.4, 23.3 +/- 2.4; and 120.0 +/- 14.7 mIU/ml, respectively. The authors suggest that the sexual maturation of girls is initiated by the enhanced hypothalamic activity, reflected in higher concentrations of immunoreactive LH-RH in peripheral serum.  相似文献   

3.
A series of LH-RH antagonist analogs has been developed in which inhibitory activities have been increased to a potentially clinically useful level. The new peptides, which are typified by [N-acetyl-D-p-Cl-Phe1,2, D-Trp3, D-Phe6,D-Ala10]-LH-RH and [N-acetyl-D-Trp1,3,D-p-Cl-Phe2,D-Phe6, D-Ala10]-LH-RH, most importantly contain new modification to positions 1, 2 and 10, and induce full blockade of ovulation at single doses as low as 10 μg per rat (50 μg/kg). Various ring substituents on D-Trp or D-Phe in position 1 or other D-amino acid replacements in position 10 did not significantly improve anti-ovulatory activity. Incorporation of N-Me-Leu in position 7 was slightly detrimental to activity.  相似文献   

4.
5.
Six analogs of LH-RH lacking N-terminal pGlu ring structure, Gly1-LH-RH, formyl Gly1-LH-RH, acetyl Gly1-LH-RH, propionyl Gly1-LH-RH, palmitoyl Gly1-LH-RH and acetyl Ala1-LH-RH were synthesized. The Gly1 analog was inactive, whereas acyl Gly1 analogs except palmitoyl Gly1 analog showed small but significant LH-RH activity in spite of the lack of the pyrrolidone ring structure. These findings suggest that the -CO-NHCHCO- group is the minimum necessary part of the pGlu residue to exhibit the biological activity.  相似文献   

6.
A 2-min addition of LHRH to [3H]inositol-prelabeled rat granulosa cells in primary culture evoked significant increases in the accumulation of [3H]inositol phosphates, i.e. radiolabeled inositol monophosphate (IP), inositol diphosphate (IP2), and inositol triphosphate (IP3) levels increased to 210, 590 and 520%, respectively, when compared to control cultures. By contrast, addition of FSH failed to elicit such a response. The effect of LHRH was completely blocked by the concomitant presence of a specific LHRH antagonist. LHRH evoked increase in [3H]IP3 and [3H]IP2 accumulation as early as 30 sec, while the increase in [3H]IP became significant at 2 min. These data support the hypothesis that polyphosphoinositide breakdown may be an early step in the intracellular signal mechanism which mediates the action of LHRH.  相似文献   

7.
The effects of synthetic somatostatin (SRIF) on serum growth hormone (GH) concentrations stimulated by exogenous administration of synthetic thyrotropin-releasing hormone (TRH) and/or human pancreatic GH-releasing factor (hpGRF) were investigated in 4-week-old cockerels. In addition, the additive effects of TRH and hpGRF on serum GH were examined. TRH and hpGRF, when given in combination intravenously, produced an additive effect on serum GH concentration that peaked 10 min after the injection. The somatostatin did not significantly affect basal GH concentrations when given alone, but did significantly decrease the magnitude of the GH response to hpGRF. In contrast, SRIF did not significantly decrease the stimulatory effects of TRH on GH release. These results suggest that TRH and hpGRF are potent GH releasers in vivo and that their stimulating effects on GH release are additive, suggesting different mechanisms for their stimulation. The results obtained from the combination studies suggest that the main site of the stimulatory action of hpGRF is at the pituitary, and that SRIF significantly inhibited the rise in serum GH induced by a synthetic hpGRF, but not that induced by TRH.  相似文献   

8.
Luteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I and LHRH-II and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the fifth and sixth bond of the decapeptide (Tyr(5)-Gly(6)) to form LHRH-(1-5). We have previously reported that the autoregulation of LHRH gene expression can also be mediated by its processed peptide, LHRH-(1-5). Furthermore, LHRH-(1-5) has also been shown to be involved in cell proliferation. This review will focus on the possible roles of LHRH and its processed peptide, LHRH-(1-5), in non-hypothalamic tissues.  相似文献   

9.
10.
The luteinizing hormone receptor (LHR) plays a key role in testosterone production through its interaction with the gonadotropins, LH and chorionic gonadotropin. We examined the LHR splicing pattern in bovine Leydig cells; LH-induced expression of eight cloned splicing variants was detected by real-time PCR. Luteinizing hormone applied to cultured Leydig cells resulted in expression of full-length LHR and the A and B isoforms, as well as secretion of testosterone, which first increased, then declined, and then increased further, with increased LH levels. The secretion of testosterone progressively increased with increasing LH, but the expression levels of LHR (FL, A, and B) did not increase correspondingly. We conclude that the LHR splicing pattern is complex in bovine Leydig cells, and that expression of full-length LHR and isoforms A and B changes when induced with LH.  相似文献   

11.
12.
Schally AV 《Peptides》1999,20(10):1247-1262
The development of the luteinizing hormone-releasing hormone (LH-RH) agonists and antagonists and the principles of their clinical use were reviewed. In the 28 years that have elapsed since the elucidation of the structure of LH-RH, various applications in gynecology, reproductive medicine, and oncology have been established for LH-RH agonists and antagonists. These clinical applications are based on inhibition of the pituitary and the gonads. The advantage of the LH-RH antagonists is due to the fact that they inhibit the secretion of gonadotropins and sex steroids immediately after the first injection and thus achieve rapid therapeutic effects in contrast to the agonists, which require repeated administration. LH-RH antagonists should find applications in the treatment of benign gynecologic disorders and benign prostatic hypertrophy and in assisted reproduction programs. The primary treatment of advanced androgen-dependent prostate cancer is presently based on the use of depot preparations of LH-RH agonists, but antagonists like Cetrorelix already have been tried successfully. Antagonists of LH-RH might be more efficacious than agonists in treatment of patients with breast cancer as well as ovarian and endometrial cancer. Recently, practical cytotoxic analogs of LH-RH that can be targeted to LH-RH receptors on tumors have been synthesized and successfully tested in experimental cancer models. Targeted cytotoxic LH-RH analogs show a great promise for therapy of prostate, breast, and ovarian cancers.  相似文献   

13.
Responses of growth hormone (GH) release to synthetic human growth hormone-releasing factor (hGRF)-44-NH2 analogs were determined, and the GH-releasing potency based on dose per kg of body weight (bw) was compared with that of hGRF-44-NH2 in female dairy calves. Four- and 12-month-old calves were injected intravenously with 0.25 microgram of hGRF-44-NH2 or its analogs per kg of bw. Blood samples were collected before, and during 180 min after each injection, and plasma GH concentrations were measured by radioimmunoassay. Areas under the GH response curves for 180 min after injection of hGRF-44-NH2 and its analogs were used as an index of the GH-releasing potency of each peptide. The GH-releasing potency of hGRF(1-26)-NH2 was significantly lower than that of hGRF-44-NH2 (P less than 0.05). On the other hand, hGRF(1-29)-NH2 possessed similar potency to hGRF-44-NH2. [D-Tyr1]-hGRF-44-NH2 showed prolonged GH-releasing activity, though its potency was similar to that of hGRF-44-NH2. Also, [D-Ala2]-hGRF(1-29)-NH2 exhibited prolonged GH-releasing activity, and its potency was 2.5 (P less than 0.05) and twice (P less than 0.05) as great as that of hGRF-44-NH2 and hGRF(1-29)-NH2, respectively. These results demonstrate that the N-terminal 29 amino acid residues of hGRF possess the activity site required for full GH release in vivo, and [D-Ala2]-hGRF(1-29)-NH2 has longer and greater activity, on a dose basis, than hGRF-44-NH2 in the calves.  相似文献   

14.
15.
The effect of Freund's adjuvant injection on 24-hour variation of hypothalamic corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH), GH-releasing hormone (GRH) and somatostatin levels was examined in adult rats kept under light between 0800 and 2000 h daily. Groups of rats receiving Freund's complete adjuvant or its vehicle 3 days before sacrifice were killed at six different time intervals throughout a 24-hour cycle. In the median eminence, adjuvant vehicle-injected rats exhibited significant 24-hour variations for the four hormones examined, with maxima at noon. These 24-hour rhythms were inhibited or suppressed by Freund's adjuvant injection. In the anterior hypothalamus of adjuvant vehicle-treated rats, CRH content peaked at 1600 h, while two peaks were found for TRH and GRH levels, i.e., at 2400-0400 h and 1600 h. Freund's adjuvant injection suppressed 24-hour rhythm of anterior hypothalamic CRH, TRH and GRH content and uncovered a peak in anterior hypothalamic somatostatin levels at 0400 h. In the medial hypothalamus of adjuvant vehicle-treated rats, significant 24-hour variations were detectable for TRH (peaks at 1600 and 2400 h) and somatostatin (peak at 2400 h) which disappeared after Freund's adjuvant injection. In the posterior hypothalamus of adjuvant vehicle-treated rats, two peaks were apparent for CRH, TRH and somatostatin levels, i.e. at 1600 h and 2400-0400 h, this hormonal profile remaining unmodified after Freund's adjuvant administration. The administration of the immunosuppressant drug cyclosporine (5 mg/kg, 5 days) impaired the depressing effect of Freund's adjuvant injection on CRH, TRH and somatostatin content in median eminence, but not that on GRH. In the anterior hypothalamus, cyclosporine generally prevented the effect of immunization on hormone levels an revealed a second maximum in TRH at 0400 h. Cyclosporine also restored 24-hour variations in TRH and somatostatin levels of medial hypothalamus of Freund's adjuvant-injected rats but was unable to modify them in the posterior hypothalamus. The results further support the existence of a significant effect of immune-mediated inflammatory response at an early phase after Freund's adjuvant injection on hypothalamic levels which was partially sensitive to immunosuppression by cyclosporine.  相似文献   

16.
To investigate whether luteinizing hormone-releasing hormone (LHRH) influences the sexual behavior of male gray-tailed voles (Microtus canicaudus), subcutaneous injections of LHRH (500 ng) were given to intact males and to castrated males with different levels of testosterone replacement. Intact voles, as well as castrated voles with Silastic capsules of testosterone propionate, showed significant facilitation of several parameters of masculine sexual behavior 2 hr after LHRH injection, compared to saline controls. Castrated voles without testosterone replacement showed no sexual behavior, even when injected with LHRH. These results support the hypothesis that LHRH regulates sexual behavior in M. canicaudus and that the behavioral response to LHRH is dependent on testosterone. The specific behavioral parameters affected suggest that LHRH changes the arousal component of masculine behavior in voles.  相似文献   

17.
The effects of intravenous injection of synthetic human pancreatic growth hormone-releasing factor-44-NH2 (hpGRF-44) and synthetic thyrotropin releasing hormone (TRH), or hpGRF-44 in combination with TRH on growth hormone (GH), thyrotropin (TSH), and prolactin (PRL) release in dairy female calves (6- and 12-month-old) were studied. When 0.25 microgram of hpGRF-44 per kg of body weight (bw) was injected in combination with TRH (1.0 microgram per kg of bw), the mean plasma GH concentration of the 12-month-old calves rose to a maximum level of 191.5 ng/ml (P less than 0.001) at 15 min from the value of 6.8 ng/ml before injection at 0 min. The maximum level was 3.1 and 6.1 times as high as the peak values obtained after injection of hpGRF-44 (0.25 microgram per kg of bw) and TRH (1.0 microgram per kg of bw), respectively (P less than 0.001). The area under the GH response curve for the 12-month-old calves for 3 hr after injection of hpGRF-44 in combination with TRH was 2.5 times as large as the sum of the areas obtained by hpGRF-44 and TRH injections. In contrast, the mean plasma GH level was unchanged in saline injected calves. The magnitudes of the first and the second plasma GH responses in the 6-month-old calves to two consecutive injections of hpGRF-44 in combination with TRH at a 3-hr interval were very similar. The peak values of plasma GH in the calves after hpGRF-44 injection were 2-4 times as high as those after TRH injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
Site of inactivation of thyrotropin-releasing hormone by human plasma   总被引:3,自引:0,他引:3  
R M Nair  T W Redding  A V Schally 《Biochemistry》1971,10(19):3621-3624
  相似文献   

20.
The presence of superoxide dismutase in bovine and human milk was investigated by ultrafiltration, gel filtration, and isoelectric focusing. Conclusive evidence for the presence of this enzyme in both milks is presented. The molecular weight of the enzyme was estimated by gel filtration on Sephadex G-100 to be 30,000, which is consistent with reported values for the copper, zinc form of superoxide dismutase. In addition, enzyme activity was inhibited by cyanide, thus eliminating the possibility that the enzyme was present in the manganese form. Several isoenzymes were detected by isoelectric focusing in polyacrylamide gel, and the isoenzyme pattern in bovine milk was the same as that found for bovine plasma, suggesting that milk superoxide dismutase originates from plasma. It may be that the presence of copper, zinc superoxide dismutase in milk is important for the maintenance of its oxidative stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号