首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although accumulating evidence demonstrates that white matter degeneration contributes to pathology in Alzheimer's disease (AD), the underlying mechanisms are unknown. In order to study the roles of the amyloid-beta peptide in inducing oxidative stress damage in white matter of AD, we investigated the effects of amyloid-beta peptide 25-35 (Abeta) on proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha)-induced inducible nitric oxide synthase (iNOS) in cultured oligodendrocytes (OLGs). Although Abeta 25-35 by itself had little effect on iNOS mRNA, protein, and nitrite production, it enhanced TNF-alpha-induced iNOS expression and nitrite generation in OLGs. Abeta, TNF-alpha, or the combination of both, increased neutral sphingomyelinase (nSMase) activity, but not acidic sphingomyelinase (aSMase) activity, leading to ceramide accumulation. Cell permeable C2-ceramide enhanced TNF-alpha-induced iNOS expression and nitrite generation. Moreover, the specific nSMase inhibitor, 3-O-methyl-sphingomyelin (3-OMS), inhibited iNOS expression and nitrite production induced by TNF-alpha or by the combination of TNF-alpha and Abeta. Overexpression of a truncated mutant of nSMase with a dominant negative function inhibited iNOS mRNA production. 3-OMS also inhibited nuclear factor kappaB (NF-kappaB) binding activity induced by TNF-alpha or by the combination of TNF-alpha and Abeta. These results suggest that neutral sphingomyelinase/ceramide pathway is required but may not be sufficient for iNOS expression induced by TNF-alpha and the combination of TNF-alpha and Abeta.  相似文献   

2.
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Abeta and ceramide induced OLG death. In addition, Abeta activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Abeta cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Abeta-induced OLG death. Glutathione (GSH) precursors inhibited Abeta activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Abeta-induced death. These results suggest that Abeta induces OLG death by activating the nSMase-ceramide cascade via an oxidative mechanism.  相似文献   

3.
Abnormally high concentrations of beta-amyloid peptide (Abeta) and amyloid plaque formation in Alzheimer's disease (AD) may be caused either by increased generation or by decreased degradation of Abeta. Therefore, activation of mechanisms that lower brain Abeta levels is considered valuable for AD therapy. Neuronal upregulation of neprilysin (NEP) in young transgenic mice expressing the AD-causing amyloid precursor protein mutations (SwAPP) led to reduction of brain Abeta levels and delayed Abeta plaque deposition. In contrast, a comparable increase of brain NEP levels in aged SwAPP mice with pre-existing plaque pathology did not result in a significant reduction of plaque pathology. Therefore, we suggest that the potential of NEP for AD therapy is age-dependent and most effective early in the course of AD pathophysiology.  相似文献   

4.
With the growing aging population in Western countries, Alzheimer's disease (AD) has become a major public health concern. No preventive measure and effective treatment for this burdensome disease is currently available. Genetic, biochemical, and neuropathological data strongly suggest that Abeta amyloidosis, which originates from the amyloidogenic processing of a metalloprotein-amyloid precursor protein (APP), is the key event in AD pathology. However, neurochemical factors that impact upon the age-dependent cerebral Abeta amyloidogenesis are not well recognized. Growing data indicate that cerebral dysregulation of biometals, environmental metal exposure, and oxidative stress contribute to AD pathology. Herein we provided further evidence that both metals (such as Cu) and H(2)O(2) promote formation of neurotoxic Abeta oligomers. Moreover, we first demonstrated that laser capture microdissection coupled with X-ray fluorescence microscopy can be applied to determine elemental profiles (S, Fe, Cu, and Zn) in Abeta amyloid plaques. Clearly the fundamental biochemical mechanisms linking brain biometal metabolism, environmental metal exposure, and AD pathophysiology warrant further investigation. Nevertheless, the study of APP and Abeta metallobiology may identify potential targets for therapeutic intervention and/or provide diagnostic methods for AD.  相似文献   

5.
Presenilin (PS) mutations enhance the production of the Abeta42 peptide that is derived from the amyloid precursor protein (APP). The pathway(s) by which the Abeta42 species is preferentially produced has not been elucidated, nor is the mechanism by which PS mutations produce early-onset dementia established. Using a combination of histological, immunohistochemical, biochemical, and mass spectrometric methods, we examined the structural and morphological nature of the amyloid species produced in a patient expressing the PS1 280Glu-->Ala familial Alzheimer's disease mutation. Abundant diffuse plaques were observed that exhibited a staining pattern and morphology distinct from previously described PS cases, as well as discreet amyloid plaques within the white matter. In addition to finding increased amounts of CT99 and Abeta42 peptides, our investigation revealed the presence of a complex array of Abeta peptides substantially longer than 42/43 amino acid residue species. The increased hydrophobic nature of longer Abeta species retained within the membrane walls could impact the structure and function of plasma membrane and organelles. These C-terminally longer peptides may, through steric effects, dampen the rate of turnover by critical amyloid degrading enzymes such as neprilysin and insulin degrading enzyme. A complete understanding of the deleterious side effects of membrane bound Abeta as a consequence of gamma-secretase alterations is needed to understand Alzheimer's disease pathophysiology and will aid in the design of therapeutic interventions.  相似文献   

6.
Amyloid-beta (Abeta) the primary component of the senile plaques found in Alzheimer's disease (AD) is generated by the rate-limiting cleavage of amyloid precursor protein (APP) by beta-secretase followed by gamma-secretase cleavage. Identification of the primary beta-secretase gene, BACE1, provides a unique opportunity to examine the role this unique aspartyl protease plays in altering Abeta metabolism and deposition that occurs in AD. The current experiments seek to examine how modulating beta-secretase expression and activity alters APP processing and Abeta metabolism in vivo. Genomic-based BACE1 transgenic mice were generated that overexpress human BACE1 mRNA and protein. The highest expressing BACE1 transgenic line was mated to transgenic mice containing human APP transgenes. Our biochemical and histochemical studies demonstrate that mice overexpressing both BACE1 and APP show specific alterations in APP processing and age-dependent Abeta deposition. We observed elevated levels of Abeta isoforms as well as significant increases of Abeta deposits in these double transgenic animals. In particular, the double transgenics exhibited a unique cortical deposition profile, which is consistent with a significant increase of BACE1 expression in the cortex relative to other brain regions. Elevated BACE1 expression coupled with increased deposition provides functional evidence for beta-secretase as a primary effector in regional amyloid deposition in the AD brain. Our studies demonstrate, for the first time, that modulation of BACE1 activity may play a significant role in AD pathogenesis in vivo.  相似文献   

7.
We investigated the morphology and biochemistry of the amyloid-beta (Abeta) peptides produced in TgCRND8 Tg mice carrying combined amyloid precursor protein (APP) Swedish (K670M/N671L) and Indiana (V717F) mutations. Histological analyses employing amyloid-specific staining and electron microscopy revealed that the TgCRND8 Tg mice produce an aggressive pathology, evident as early as 3 months of age, that is a composite of core plaques and peculiar floccular diffuse parenchymal deposits. The Abeta peptides were purified using combined FPLC-HPLC, Western blots, and immunoprecipitation methods and characterized by MALDI-TOF/SELDI-TOF mass spectrometry. The C-terminal APP peptides, assessed by Western blot experiments and mass spectrometry, suggested an alteration in the order of secretase processing, yielding a C-terminal fragment pattern that is substantially different from that observed in sporadic Alzheimer's disease (AD). This modified processing pattern generated longer Abeta peptides, as well as those ending at residues 40/42/43, which may partially explain the early onset and destructive nature of familial AD caused by APP mutations. Despite an aggressive pathology that extended to the cerebellum and white matter, these animals tolerated the presence of an imposing amount of Abeta load. Abeta immunization resulted in an impressive 7-fold reduction in the number of amyloid core plaques and, as previously demonstrated, a significant memory recovery. However, given the phylogenetic distance and the differences in APP processing and Abeta chemistry between Tg mice and AD, caution should be applied in projecting mouse therapeutic interventions onto human subjects.  相似文献   

8.
In addition to pathology in the gray matter, there are also abnormalities in the white matter in Alzheimer's disease (AD). Sulfatide species are a class of myelin-specific sphingolipids and are involved in certain diseases of the central nervous system. To assess whether sulfatide content in gray and white matter in human subjects is associated with both the presence of Alzheimer's disease (AD) pathology as well as the stage of dementia, we analyzed the sulfatide content of brain tissue lipid extracts by electrospray ionization mass spectrometry from 22 subjects whose cognitive status at time of death varied from no dementia to very severe dementia. All subjects with dementia had AD pathology. The results demonstrate that: (i) sulfatides were depleted up to 93% in gray matter and up to 58% in white matter from all examined brain regions from AD subjects with very mild dementia, whereas all other major classes of lipid (except plasmalogen) in these subjects were not altered in comparison to those from age-matched subjects with no dementia; (ii) there was no apparent deficiency in the biosynthesis of sulfatides in very mild AD subjects as characterized by the examination of galactocerebroside sulfotransferase activities in post-mortem brain tissues; (iii) the content of ceramides (a class of potential degradation products of sulfatides) was elevated more than three-fold in white matter and peaked at the stage of very mild dementia. The findings demonstrate that a marked decrease in sulfatides is associated with AD pathology even in subjects with very mild dementia and that these changes may be linked with early events in the pathological process of AD.  相似文献   

9.
Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity   总被引:2,自引:0,他引:2  
Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.  相似文献   

10.
Abeta is the core protein of extracellular plaque of Alzheimer's disease, and its neurotoxicity is relative to its conformation. In the current work, the effects of various factors, such as pH, ionic strength and lipid membranes, on the secondary structure of Abeta were studied by circular dichroism. In addition, we detected the exposure of hydrophobic sites of Abeta under different conditions using ANS fluorescence. The results showed that the hydrophobic exposure of the protein was correlated with the content of 3betasheet conformation in the phospholipid-containing environment. The beta-sheet content and hydrophobic exposure of Abeta both increased when reacted with pure PC vesicles, while no beta-sheet content and very low hydrophobic exposure were detected after reaction with 30% cholesterol containing PC vesicles. Since beta-sheet conformation is considered as the toxic conformation of Afbeta such correlation may be important for the pathology of AD.  相似文献   

11.
Alzheimer's disease (AD) is characterized by neurofibrillary tangles and by the accumulation of beta-amyloid (Abeta) peptides in senile plaques and in the walls of cortical and leptomeningeal arteries as cerebral amyloid angiopathy (CAA). There also is a significant increase of interstitial fluid (ISF) in cerebral white matter (WM), the pathological basis of which is largely unknown. We hypothesized that the accumulation of ISF in dilated periarterial spaces of the WM in AD correlates with the severity of CAA, with the total Abeta load in the cortex and with Apo E genotype. A total of 24 AD brains and 17 nondemented age-matched control brains were examined. CAA was seen in vessels isolated from brain by using EDTA-SDS lysis stained by Thioflavin-S. Total Abeta in gray matter and WM was quantified by immunoassay, ApoE genotyping by PCR, and dilatation of perivascular spaces in the WM was assessed by quantitative histology. The study showed that the frequency and severity of dilatation of perivascular spaces in the WM in AD were significantly greater than in controls (P< 0.001) and correlated with Abeta load in the cortex, with the severity of CAA, and with ApoE epsilon4 genotype. The results of this study suggest that dilation of perivascular spaces and failure of drainage of ISF from the WM in AD may be associated with the deposition of Abeta in the perivascular fluid drainage pathways of cortical and leptomeningeal arteries. This failure of fluid drainage has implications for therapeutic strategies to treat Alzheimer's disease.  相似文献   

12.
Alzheimer's disease (AD) is a protein misfolding disease. Early hypothesis of AD pathology posits that 39-43 AA long misfolded amyloid beta (Abeta) peptide forms a fibrillar structure and induces pathophysiological response by destabilizing cellular ionic homeostasis. Loss of cell ionic homeostasis is believed to be either indirectly due to amyloid beta-induced oxidative stress or directly by its interaction with the cell membrane and/or activating pathways for ion exchange. Significantly though, no Abeta specific cell membrane receptors are known and oxidative stress mediated pathology is only partial and indirect. Most importantly, recent studies strongly indicate that amyloid fibrils may not by themselves cause AD pathology. Subsequently, a competing hypothesis has been proposed wherein amyloid derived diffusible ligands (ADDLs) that are large Abeta oligomers (approximately >60 kDa), mediate AD pathology. No structural details, however, of these large globular units exist nor is there any known suitable mechanism by which they would induce AD pathology. Experimental data indicate that they alter cell viability by non-specifically changing the plasma membrane stability and increasing the overall ionic leakiness. The relevance of this non-specific mechanism for AD-specific pathology seems limited. Here, we provide a viable new paradigm: AD pathology mediated by amyloid ion channels made of small Abeta oligomers (trimers to octamers). This review is focused to 3D structural analysis of the Abeta channel. The presence of amyloid channels is consistent with electrophysiological and cell biology studies summarized in companion reviews in this special issue. They show ion channel-like activity and channel-mediated cell toxicity. Amyloid ion channels with defined gating and pharmacological agents would provide a tangible target for designing therapeutics for AD pathology.  相似文献   

13.
Astrocytes recruitment and activation are a hallmark of many neurodegenerative diseases including Alzheimer's disease (AD). We have previously observed an overexpression for S100A6 protein, a Ca(2+)/Zn(2+) binding protein presenting more affinity for zinc than for calcium, in amyotrophic lateral sclerosis (ALS). Here we demonstrated in AD patients but also in two different AD mouse models, that astrocytic S100A6 protein was homogeneously up-regulated within the white matter. However, within the grey matter, almost all S100A6 immunoreactivity was concentrated in astrocytes surrounding the Abeta amyloid deposits of senile plaques. These S100A6 neocortex labelled astrocytes were also positive for the glial fibrillary acidic protein (GFAP) and S100B protein. Contrasting with S100A6, the distribution for S100B and GFA astrocytic labelled cells was not restricted to the Abeta amyloid deposit in grey matter, but widely distributed throughout the neocortex. Coupling the knowledge that biometals such as zinc are highly concentrated in the amyloid deposits in AD and S100A6 having a high affinity for Zn(2+) may suggest that S100A6 plays a role in AD neuropathology.  相似文献   

14.
The incidence of Alzheimer's disease (AD) is greater in women than men at any age, as is the development of amyloid pathology in several transgenic mouse models of AD. Due to the involvement of metals in AD pathogenesis, variations between the sexes in metal metabolism may contribute to the sex difference in AD risk. In this study, we investigated sex differences in brain metal levels across the lifespan in mice of two different background strains, as well as in mice overexpressing the human amyloid precursor protein (APP) and amyloid-beta protein (Abeta). We demonstrate consistently lower Cu and higher Mn levels in females compared with males at any age studied. The sex differences in Cu and Mn levels are independent of APP/Abeta expression. AD brain exhibits decreased Cu and increased Mn levels, as do transgenic mice overexpressing APP or Abeta. The age-dependent elevations of Cu, Fe and Co levels were found to be significantly greater in mice of B6/SJL background compared with B6/DBA. If depleting Cu and/or rising Mn levels contribute to AD pathogenesis, natural sex differences in these brain metal levels may contribute to the increased propensity of females to develop AD.  相似文献   

15.
A growing body of evidence suggests a relationship between oxidative stress and beta-amyloid (Abeta) peptide accumulation, a hallmark in the pathogenesis of Alzheimer's disease (AD). However, a direct causal relationship between oxidative stress and Abeta pathology has not been established in vivo. Therefore, we crossed mice with a knockout of one allele of manganese superoxide dismutase (MnSOD), a critical antioxidant enzyme, with Tg19959 mice, which overexpress a doubly mutated human beta-amyloid precursor protein (APP). Partial deficiency of MnSOD, which is well established to cause elevated oxidative stress, significantly increased brain Abeta levels and Abeta plaque burden in Tg19959 mice. These results indicate that oxidative stress can promote the pathogenesis of AD and further support the feasibility of antioxidant approaches for AD therapy.  相似文献   

16.
Immunotherapy against beta-amyloid peptide (Abeta) is a leading therapeutic direction for Alzheimer disease (AD). Experimental studies in transgenic mouse models of AD have demonstrated that Abeta immunization reduces Abeta plaque pathology and improves cognitive function. However, the biological mechanisms by which Abeta antibodies reduce amyloid accumulation in the brain remain unclear. We provide evidence that treatment of AD mutant neuroblastoma cells or primary neurons with Abeta antibodies decreases levels of intracellular Abeta. Antibody-mediated reduction in cellular Abeta appears to require that the antibody binds to the extracellular Abeta domain of the amyloid precursor protein (APP) and be internalized. In addition, treatment with Abeta antibodies protects against synaptic alterations that occur in APP mutant neurons.  相似文献   

17.
We previously identified abnormalities of the endocytic pathway in neurons as the earliest known pathology in sporadic Alzheimer's disease (AD) and Down's syndrome brain. In this study, we modeled aspects of these AD-related endocytic changes in murine L cells by overexpressing Rab5, a positive regulator of endocytosis. Rab5-transfected cells exhibited abnormally large endosomes immunoreactive for Rab5 and early endosomal antigen 1, resembling the endosome morphology seen in affected neurons from AD brain. The levels of both Abeta40 and Abeta42 in conditioned medium were increased more than 2.5-fold following Rab5 overexpression. In Rab5 overexpressing cells, the levels of beta-cleaved amyloid precursor protein (APP) carboxyl-terminal fragments (betaCTF), the rate-limiting proteolytic intermediate in Abeta generation, were increased up to 2-fold relative to APP holoprotein levels. An increase in beta-cleaved soluble APP relative to alpha-cleaved soluble APP was also observed following Rab5 overexpression. BetaCTFs were co-localized by immunolabeling to vesicular compartments, including the early endosome and the trans-Golgi network. These results demonstrate a relationship between endosomal pathway activity, betaCTF generation, and Abeta production. Our findings in this model system suggest that the endosomal pathology seen at the earliest stage of sporadic AD may contribute to APP proteolysis along a beta-amyloidogenic pathway.  相似文献   

18.
Central to the pathology of Alzheimer's disease (AD) is the profuse accumulation of amyloid-beta (Abeta) peptides in the brain of affected individuals, and several amyloid precursor protein (APP) transgenic (Tg) mice models have been created to mimic Abeta deposition. Among these, the PDAPP Tg mice carrying the familial AD APP 717 Val --> Phe mutation have been widely used to test potential AD therapeutic interventions including active and passive anti-Abeta immunizations. The structure and biochemistry of the PDAPP Tg mice Abeta-related peptides were investigated using acid and detergent lysis of brain tissue, ultracentrifugation, FPLC, HPLC, enzymatic and chemical cleavage of peptides, Western blot, immunoprecipitation, and MALDI-TOF and SELDI-TOF mass spectrometry. Our experiments reveal that PDAPP mice produce a variety of C-terminally elongated Abeta peptides in addition to Abeta n-40 and Abeta n-42, as well as N-terminally truncated peptides, suggesting anomalous proteolysis of both APP and Abeta. Important alterations in the overall APP degradation also occur in this model, resulting in a striking comparative lack of CT83 and CT99 fragments, which may be inherent to the strain of mice, a generalized gamma-secretase failure, or the ultimate manifestation of the overwhelming amount of expressed human transgene; these alterations are not observed in other strains of APP Tg mice or in sporadic AD. Understanding at the molecular level the nature of these important animal models will permit a better understanding of therapeutic interventions directed to prevent, delay, or reverse the ravages of sporadic AD.  相似文献   

19.
Amyloid-beta (Abeta) plaques and neurofibrillary tangles are the hallmark neuropathological lesions of Alzheimer's disease (AD). Using a triple transgenic model (3xTg-AD) that develops both lesions in AD-relevant brain regions, we determined the consequence of Abeta clearance on the development of tau pathology. Here we show that Abeta immunotherapy reduces not only extracellular Abeta plaques but also intracellular Abeta accumulation and most notably leads to the clearance of early tau pathology. We find that Abeta deposits are cleared first and subsequently reemerge prior to the tau pathology, indicative of a hierarchical and direct relationship between Abeta and tau. The clearance of the tau pathology is mediated by the proteasome and is dependent on the phosphorylation state of tau, as hyperphosphorylated tau aggregates are unaffected by the Abeta antibody treatment. These findings indicate that Abeta immunization may be useful for clearing both hallmark lesions of AD, provided that intervention occurs early in the disease course.  相似文献   

20.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号