首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
1. Two main hypotheses are usually invoked to explain density dependence in fecundity: the habitat heterogeneity hypothesis (HHH) and the individual adjustment hypothesis (IAH). Although simple methods have been proposed to discriminate between the two hypotheses, their adequacy was tested for only a limited set of real and model populations. 2. In a computer simulation study based on a stochastic territory-based approach, Ferrer, Newton & Casado (2006, Journal of Animal Ecology, 75, 111-117) argued that a strong negative relationship between mean fecundity and its skewness in stable or increasing populations provides critical support for HHH, as this relationship should be lacking under IAH. A negative relationship between mean fecundity and its coefficient of variation (CV) was predicted under both hypotheses, although with a lower slope under IAH. 3. We used a comparable simulation approach, with model populations parameterized from an increasing Bonelli's eagle Hieraaetus fasciatus population (1992-2006), to show that both HHH and IAH can produce indistinguishable relationships between mean fecundity and both its CV and its skewness. 4. Strong negative correlations between the mean and both its CV and its skewness can emerge as statistical artifacts under biologically plausible assumptions, and so they may be largely inadequate to infer mechanisms underlying density dependence in demographic parameters.  相似文献   

2.
Brood reduction, the death of one or more chicks through siblicide or starvation, can occur through density‐dependence in fecundity. Brood reduction may arise in territorial breeding systems either as a response to a high level of territorial interference in a situation of high density or as a result of habitat heterogeneity. To test the predictions of the two main hypotheses that attempt to explain how density‐dependent fecundity is generated, the Habitat Heterogeneity Hypothesis (HHH) and the Individual Adjustment Hypothesis (IAH), we analysed the relationship between density and fecundity in an expanding population of Booted Eagles in Doñana National Park, Spain, using an 18‐year data series. We also studied the occurrence and frequency of brood reduction in the same Booted Eagle population to appreciate further its effects and the factors that influence its occurrence and frequency. Our results support the HHH in the present situation of high density, as fecundity in the better territories (older and more frequently occupied) was higher than in low quality territories and was not affected by population density in high density periods. Nevertheless, the fecundity of high quality territories was affected (although not significantly) by population density in periods of low density, suggesting that the IAH was supported when only high quality territories were occupied. Older territories were used more frequently and chicks in these areas hatched earlier and suffered lower mortality than in new territories. We found a significant negative relationship between mean fecundity and its skewness, a finding that also supports HHH. During years of food shortage, less frequently occupied territories suffered higher rates of brood reduction. Brood reduction in this Booted Eagle population was a consequence of the heterogeneous structure of the habitat, with some territories having a higher probability of brood reduction than others. Parental nutritional condition did not affect brood reduction. The effect of brood reduction on nestling quality and population dynamics is also discussed.  相似文献   

3.
Density-dependence effects acting on fecundity can be explained by two competing hypotheses. The individual adjustment hypothesis (IAH) states that, as population density increases, interference among individuals negatively affects their breeding performance. The second hypothesis, the habitat heterogeneity hypothesis (HHH), proposes that, as more individuals occupy the space available, lower quality habitats are increasingly used, causing average population fecundity to decline. In territorial species, it is often predicted that interference mechanisms (IAH) should be of less importance than spatial heterogeneity (HHH). Here, we test this prediction in Golden Eagles, using 35 years of reproduction monitoring data from a population that has been recolonizing the grounds of a French National Park (Ecrins) in the Alps. During the study period, the Eagle population increased from c. 11 to 41 territorial pairs, providing a good opportunity to explicitly assess fecundity across a gradient of densities. Under the IAH, we expect the fecundity of all territories to diminish as density rises. Under strict HHH, older territories should maintain higher fecundity across time, and a positive relationship between fecundity and the seniority of a territory should be observed. A density-dependent pattern was clearly detected at the population level. At the territory level, the decrease of fecundity was strongly related to population size but not to territory seniority. Fecundity decreased similarly in all territories, suggesting that the IAH better explains the observed pattern. Two alternative mechanisms, related to the IAH, could be at play in this population: (1) negative interference by neighbours and non-territorial Eagles and (2) the contraction of individual territories over time. Our results provide new insights into density dependence in territorial raptors, suggesting that, in addition to habitat heterogeneity, interference mechanisms might actually also play an important role.  相似文献   

4.
1. The habitat heterogeneity (HHH) and individual adjustment (IAH) hypotheses are commonly proposed to explain a decrease in reproduction rate with increasing population density. Higher numbers of low-quality territories with low reproductive success as density increases lead to a decrease in reproduction under the HHH, while more competition at high density decreases reproduction across all territories under the IAH. 2. We analyse the influence of density and habitat heterogeneity on reproductive success in eight populations of long-lived territorial birds of prey belonging to four species. Sufficient reliability in distinguishing between population-wide, site-specific and individual quality effects on reproduction was granted through the minimal duration of 20 years of all data sets and the ability to control for individual quality in five of them. 3. Density increased in five populations but reproduction did not decrease in these. Territory occupancy as a surrogate of territory quality correlated positively with reproductive success but only significantly so in large data sets with more than 100 territories. 4. Reproductive success was always best explained by measures of territory quality in multivariate models. Direct or delayed (t-1) population density entered very few of the best models. Mixed models controlling for individual quality showed an increasing reproductive performance in older individuals and in those laying earlier, but measures of territory quality were also always retained in the best models. 5. We find strong support for the habitat heterogeneity hypothesis but weak support for the individual adjustment hypothesis. Both individual and site characteristics are crucial for reproductive performance in long-lived birds. Proportional occupancy of territories enables recognition of high-quality territories as preferential conservation targets.  相似文献   

5.
Density‐dependent reproduction is commonly explained by either the habitat heterogeneity (HHH) or individual adjustment (IAH) hypothesis. Under the HHH, high quality territories are assumed to be occupied first. At higher density, occupation of low‐quality territories increases due to lower availability of high‐quality territories, which reduces mean reproductive success. Alternatively, the IAH assumes that increased competition at higher densities reduces reproductive success in all territories. For birds of prey, HHH plays an important role in territorial species, and IAH in socially breeding species. To test the generality of this hypothesis, we studied the mechanism behind density dependence in raven Corvus corax, a long‐lived passerine bird, using long‐term population data from a large number of territories. Population density decreased reproduction, which was explained by increased usage of low quality territories at higher density, supporting the HHH. Density reduced reproduction in low quality territories, but not in high and intermediate quality territories. We additionally compared the explanatory power of different models describing brood size, representing IAH, HHH, or a combination of both. The best model represented a combination of both hypotheses, in which the effect of density depended on territory quality. Our conclusion that both IAH and HHH are supported can be explained by the biology of ravens, where territorial adults not only experience interference competition with other territorial adults, but also with social groups of juveniles and floaters. We conclude that the relative importance of IAH and HHH may depend on variation in territory quality and social structure.  相似文献   

6.
Two hypotheses have been proposed to link population regulation to density‐dependent changes in demographical parameters: the habitat heterogeneity hypothesis (HHH) states that, as population density rises, an increasing proportion of individuals are forced to occupy low‐quality territories, which provokes a decline in average per‐capita survival and/or productivity although some individuals show no decline in fecundity; and the individual adjustment hypothesis (IAH), which suggests that increased densities lead to reductions in survival and/or fecundity by enhancing agonistic interactions, which affect all individuals to a similar extent. However, density‐dependent effects can be affected by density‐independent factors (DIF), such as weather. We test the effects of density dependence on annual reproductive success in Griffon Vultures Gyps fulvus at four spatial scales, nest‐site, cliff, colony and metacolony, in northern Spain from 2008 to 2015. Our results showed most support for the HHH at all scales. At the colony and cliff scale, IAH and DIF had similar importance, whereas there was little evidence of IAH at the metacolony and the nest scale. The best protected eyries (caves, potholes and sheltered ledges) produced the most fledglings and were used preferentially, whereas low‐quality eyries (exposed ledges or open crevices) were used only when the number of breeders increased. The significant interaction between breeding failure and density found for the more exposed eyries suggests that at higher densities, breeding pairs are forced to use poorer nesting areas, and the negative effect of density at the cliff scale could be due to the combined effect of a higher proportion of pairs using low‐quality eyries and the negative effect of rainfall.  相似文献   

7.
1. Beja & Palma (2008, Journal of Animal Ecology, 77, doi: 10.1111/j.1365-2656.2007.01312.x) attempt to provide a critical analysis of the effectiveness and limitations of a previously published method (Ferrer et al. 2006, Journal of Animal Ecology, 75, 111-117.) to discriminate between Habitat Heterogeneity Hypothesis and the Individual Adjustment Hypothesis using real data from a Bonelli's eagle Hieraaetus fasciatus population. 2. They conclude that significant and strong correlations between mean and CV or skewness are expected under a biologically plausible assumption about brood size distribution, and that the two hypotheses cannot therefore be distinguished. 3. A major concern we have with their paper centres on this biologically plausible brood-size distribution. They used the same quasi-Poisson distribution of brood sizes (typical for a saturate population under Habitat Heterogeneity Hypothesis) for both families of simulations. So, is not surprising that both groups gave similar results. 4. They argued that this approach was 'empirical', free of theoretical assumptions. But in testing between hypotheses, what we are looking for is precisely the differences among theoretical brood-size distributions predicted under the two hypotheses. 5. Summarizing, with the same mean fecundity at high densities, both hypotheses must have different brood-size distributions. So the use of a single left-skewed distribution, typical of a real saturated population (most likely under Habitat Heterogeneity Hypothesis) in attempts to distinguish between the two hypotheses by re-sampling several times on the same left-skewed distribution, as done by Beja & Palma, is clearly inappropriate.  相似文献   

8.
Parents affect offspring fitness by propagule size and quality, selection of oviposition site, quality of incubation, feeding of dependent young, and their defence against predators and parasites. Despite many case studies on each of these topics, this knowledge has not been rigorously integrated into individual parental care traits for any taxon. Consequently, we lack a comprehensive, quantitative assessment of how parental care modifies offspring phenotypes. This meta‐analysis of 283 studies with 1805 correlations between egg size and offspring quality in birds is intended to fill this gap. The large sample size enabled testing of how the magnitude of the relationship between egg size and offspring quality depends on a number of variables. Egg size was positively related to nearly all studied offspring traits across all stages of the offspring life cycle. Not surprisingly, the relationship was strongest at hatching but persisted until the post‐fledging stage. Morphological traits were the most closely related to egg size but significant relationships were also found with hatching success, chick survival, and growth rate. Non‐significant effect sizes were found for egg fertility, chick immunity, behaviour, and life‐history or sexual traits. Effect size did not depend on whether chicks were raised by their natural parents or were cross‐fostered to other territories. Effect size did not depend on species‐specific traits such as developmental mode, clutch size, and relative size of the egg, but was larger if tested in captive compared to wild populations and between rather than within broods. In sum, published studies support the view that egg size affects juvenile survival. There are very few studies that tested the relationship between egg size and the fecundity component of offspring fitness, and no studies on offspring survival as adults or on global fitness. More data are also needed for the relationships between egg size and offspring behavioural and physiological traits. It remains to be established whether the relationship between egg size and offspring performance depends on the quality of the offspring environment. Positive effect sizes found in this study are likely to be driven by a causal effect of egg size on offspring quality. However, more studies that control for potential confounding effects of parental post‐hatching care, genes, and egg composition are needed to establish firmly this causal link.  相似文献   

9.
I constructed age‐structured populations by drawing numbers from a random numbers table, the constraints being that within a cohort each number be smaller than the preceding number (indicating that some individuals died between one year and the next) and that the first two‐digit number following 00 or 01 ending one cohort’s life be the number born into the next cohort. Populations constructed in this way showed prolonged existence with total population numbers fluctuating about a mean size and with long‐term growth rate (r) ≈ 0. The populations’ birth rates and growth rates and the females’ per capita fecundity decreased significantly with population size, whereas the death rates showed no significant relationship to population size. These results indicate that age‐structured populations can persist for long periods of time with long‐term growth rates of zero in the absence of negative‐feedback loops between a population’s present or prior density and its birth rate, growth rate, and fecundity, contrary to the assumption of density‐dependent regulation hypotheses. Thus, a long‐term growth rate of zero found in natural populations need not indicate that a population’s numbers are regulated by density‐dependent factors.  相似文献   

10.
Lehmann L  Balloux F 《Genetics》2007,176(1):361-377
In a series of seminal articles in 1974, 1975, and 1977, J. H. Gillespie challenged the notion that the "fittest" individuals are those that produce on average the highest number of offspring. He showed that in small populations, the variance in fecundity can determine fitness as much as mean fecundity. One likely reason why Gillespie's concept of within-generation bet hedging has been largely ignored is the general consensus that natural populations are of large size. As a consequence, essentially no work has investigated the role of the fecundity variance on the evolutionary stable state of life-history strategies. While typically large, natural populations also tend to be subdivided in local demes connected by migration. Here, we integrate Gillespie's measure of selection for within-generation bet hedging into the inclusive fitness and game theoretic measure of selection for structured populations. The resulting framework demonstrates that selection against high variance in offspring number is a potent force in large, but structured populations. More generally, the results highlight that variance in offspring number will directly affect various life-history strategies, especially those involving kin interaction. The selective pressures on three key traits are directly investigated here, namely within-generation bet hedging, helping behaviors, and the evolutionary stable dispersal rate. The evolutionary dynamics of all three traits are markedly affected by variance in offspring number, although to a different extent and under different demographic conditions.  相似文献   

11.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

12.
Although fecundity selection is ubiquitous, in an overwhelming majority of animal lineages, small species produce smaller number of offspring per clutch. In this context, egg, hatchling and neonate sizes are absolutely larger, but smaller relative to adult body size in larger species. The evolutionary causes of this widespread phenomenon are not fully explored. The negative offspring size allometry can result from processes limiting maximal egg/offspring size forcing larger species to produce relatively smaller offspring (‘upper limit’), or from a limit on minimal egg/offspring size forcing smaller species to produce relatively larger offspring (‘lower limit’). Several reptile lineages have invariant clutch sizes, where females always lay either one or two eggs per clutch. These lineages offer an interesting perspective on the general evolutionary forces driving negative offspring size allometry, because an important selective factor, fecundity selection in a single clutch, is eliminated here. Under the upper limit hypotheses, large offspring should be selected against in lineages with invariant clutch sizes as well, and these lineages should therefore exhibit the same, or shallower, offspring size allometry as lineages with variable clutch size. On the other hand, the lower limit hypotheses would allow lineages with invariant clutch sizes to have steeper offspring size allometries. Using an extensive data set on the hatchling and female sizes of > 1800 species of squamates, we document that negative offspring size allometry is widespread in lizards and snakes with variable clutch sizes and that some lineages with invariant clutch sizes have unusually steep offspring size allometries. These findings suggest that the negative offspring size allometry is driven by a constraint on minimal offspring size, which scales with a negative allometry.  相似文献   

13.
Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density‐dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density‐dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange‐crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density‐dependent nest predation can underlie the relationship between population density and fecundity even in a high‐density, insular population where intraspecific competition should be strong.  相似文献   

14.
Fecundity and oocyte size of Oreochromis niloticus females were studied over a period of two annual cycles in six small agropastoral and three large hydroelectric reservoirs of Côte d'Ivoire. Important differences in fecundity and oocyte size were observed among populations and within the same population between successive years. An inverse correlation was found between size and number of oocytes produced by females. This inverse relationship occurred for a constant spawn weight during the first year of study, but not during the second year. Monthly mean residuals of regressions between fecundity and female body weight have shown a seasonal variation in fecundity. The peak of fecundity corresponded with the maximum resource availability and the flooding eminence, which may have a great impact on parents and offspring fitness.  相似文献   

15.
Fecundity is a primary component of fitness. Theory predicts that the evolution of fecundity through increased brood size results from fecundity selection favouring larger female size to accommodate more offspring and to store more energy. This is expected to generate asymmetric selection on body size between the sexes, ultimately driving evolution of female-biased sexual size dimorphism. Additionally, it has been predicted that the intensity of fecundity selection increases when the opportunities for reproduction are reduced by the limiting thermal effects of increasing latitude-elevation (i.e. decreasing environmental temperatures) on the length of the reproductive season. This later factor would be particularly strong among ectotherms, where reproduction is heavily temperature-dependent. However, this integrative perspective on reproductive evolution by fecundity selection has rarely been investigated. Here, we employ a comparative approach to investigate these predictions in Liolaemus, a prominent lizard radiation. As expected, Liolaemus reproductive output (i.e. offspring number per reproductive episode) increases predictably with increasing female size. However, contrary to predictions, we found that increased fecundity does not translate into female-biased SSD, and that combined latitude-elevation does not impose a detectable effect on fecundity. Finally, our allometric analyses reveal that SSD scales with body size, which supports the occurrence of Rensch’s rule in these lizards. We discuss the evolutionary implications of our results, and the assumptions of the investigated hypotheses.  相似文献   

16.
The evolution of matrotrophy introduces the potential for genomic conflicts between mothers and embryos. These conflicts are hypothesized to accelerate the evolution of reproductive isolation and to influence the evolution of life-history traits, reproductive structures, and genomic imprinting. These hypotheses assume offspring can influence the amount of maternal investment they receive and that there is a trade-off between maternal investment into individual offspring and maternal survival or fecundity. We used field data and laboratory crosses to test whether these assumptions are met in the matrotrophic poeciliid fish Heterandria formosa . Comparisons of life histories between two natural populations demonstrated a trade-off between the level of maternal investment into individual embryos and maternal fecundity. Laboratory crosses between individuals from these populations revealed that offspring genotype exerts an influence on the level of maternal investment and affects maternal fecundity through higher rates of embryo abortion and lower numbers of full-term offspring. Our results show that the prerequisites for parent–offspring conflict to be a potent evolutionary force in poeciliid fish are present in H. formosa. However, determining whether this conflict has shaped maternal investment in nature will require disentangling any effects of conflict from those of several ecological factors that are themselves correlated with the expected intensity of conflict.  相似文献   

17.
本文研究了一种叶甲(Timarchamaritima)的种群变异性,在此物种的整个分布范围内,沿法国大西洋海岸取选10个种群,测定个体大小、生育力、寄生量、性比、交配模式几个变量,各变量在不同种群间呈现显著差异。我们的调查结果也表明:原生生物(簇虫,Gregarinamunieri)的寄生是影响T.maritima生态习性的主要因素;这种甲虫的交配模式与寄生量有关,这种交配模式3年前已在一个高寄生种群内发现;个体大小与交配的关联不显著,即便是在没有寄生的种群中也是这样;在不同种群间,寄生感染程度也是一个有力的指示量,可以预示雌性个体的生育力变化;相反,不管观察什么种群,外寄生种(蜱螨,Pseudamansiachrysomelinus)(Acari:Canestriniidae)的作用很小。这项研究表明:在研究种群生态学时,需要同时观察寄生物的影响。  相似文献   

18.
In many species, males can influence the amount of resources their mates invest in reproduction. Two favoured hypotheses for this observation are that females assess male quality during courtship or copulation and alter their investment in offspring accordingly, or that males manipulate females to invest heavily in offspring produced soon after mating. Here, we examined whether there is genetic variation for males to influence female short-term reproductive investment in Drosophila melanogaster, a species with strong sexual selection and substantial sexual conflict. We measured the fecundity and egg size of females mated to males from multiple isofemale lines collected from populations around the globe. Although these traits were not strongly influenced by the male's population of origin, we found that 22 per cent of the variation in female short-term reproductive investment was attributable to the genotype of her mate. This is the first direct evidence that male D. melanogaster vary genetically in their proximate influence on female fecundity, egg size and overall reproductive investment.  相似文献   

19.
For many species of reptile, crucial demographic parameters such as embryonic survival and individual sex (male or female) depend on ambient temperature during incubation. While much has been made of the role of climate on offspring sex ratios in species with temperature‐dependent sex determination (TSD), the impact of variable sex ratio on populations is likely to depend on how limiting male numbers are to female fecundity in female‐biased populations, and whether a climatic effect on embryonic survival overwhelms or interacts with sex ratio. To examine the sensitivity of populations to these interacting factors, we developed a generalized model to explore the effects of embryonic survival, hatchling sex ratio, and the interaction between these, on population size and persistence while varying the levels of male limitation. Populations with TSD reached a greater maximum number of females compared to populations with GSD, although this was often associated with a narrower range of persistence. When survival depended on temperature, TSD populations persisted over a greater range of temperatures than GSD populations. This benefit of TSD was greatly reduced by even modest male limitation, indicating very strong importance of this largely unmeasured biologic factor. Finally, when males were not limiting, a steep relationship between sex ratio and temperature favoured population persistence across a wider range of climates compared to the shallower relationships. The opposite was true when males were limiting – shallow relationships between sex ratio and temperature allowed greater persistence. The results highlight that, if we are to predict the response of populations with TSD to climate change, it is imperative to 1) accurately quantify the extent to which male abundance limits female fecundity, and 2) measure how sex ratios and peak survival coincide over climate.  相似文献   

20.
The mechanisms regulating bird populations are poorly understood and controversial. We provide evidence that a migratory songbird, the black-throated blue warbler (Dendroica caerulescens), is regulated by multiple density-dependence mechanisms in its breeding quarters. Evidence of regulation includes: stability in population density during 1969-2002, strong density dependence in time-series analyses of this period, an inverse relationship between warbler density and annual fecundity, and a positive relationship between annual fecundity and recruitment of yearlings in the subsequent breeding season. Tests of the mechanisms causing regulation were carried out within the Hubbard Brook Experimental Forest, New Hampshire, during 1997-1999. When individuals from abutting territories were experimentally removed in a homogeneous patch of high-quality habitat, the fecundity of focal pairs nearly doubled, revealing a locally operating crowding mechanism. A site-dependence mechanism was indicated by an inverse relationship between population size and mean territory quality, as well as by greater annual fecundity on the sites that were most frequently occupied and of highest quality. These site-dependence relationships were revealed by intensive monitoring of territory quality and demography at the landscape spatial scale. Crowding and site-dependence mechanisms, therefore, acted simultaneously but at different spatial scales to regulate local abundance of this migratory bird population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号