首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
AMP-activated protein kinase (AMPK) is a heterotrimeric complex that works as an energy sensor to integrate nutritional and hormonal signals. The naturally occurring R225Q mutation in the gamma3-subunit in pigs is associated with abnormally high glycogen content in skeletal muscle. Because skeletal muscle accounts for most of the body's glucose uptake, and gamma3 is specifically expressed in skeletal muscle, it is important to understand the underlying mechanism of this mutation in regulating glucose and glycogen metabolism. Using skeletal muscle-specific transgenic mice overexpressing wild type gamma3 (WTgamma3) and R225Q mutant gamma3 (MUTgamma3), we show that both WTgamma3 and MUTgamma3 mice have 1.5- to 2-fold increases in muscle glycogen content. In WTgamma3 mice, increased glycogen content was associated with elevated total glycogen synthase activity and reduced glycogen phosphorylase activity, whereas alterations in activities of these enzymes could not explain elevated glycogen in MUTgamma3 mice. Basal, 5-aminoimidazole-AICAR- and phenformin-stimulated AMPKalpha2 isoform-specific activities were decreased only in MUTgamma3 mice. Basal rates of 2-DG glucose uptake were decreased in both WTgamma3 and MUTgamma3 mice. However, AICAR- and phenformin-stimulated 2-DG glucose uptake were blunted only in MUTgamma3 mice. In conclusion, expression of either wild type or mutant gamma3-subunit of AMPK results in increased glycogen concentrations in muscle, but the mechanisms underlying this alteration appear to be different. Furthermore, mutation of the gamma3-subunit is associated with decreases in AMPKalpha2 isoform-specific activity and impairment in AICAR- and phenformin-stimulated skeletal muscle glucose uptake.  相似文献   

3.
4.
The AMP-activated protein kinase is an evolutionarily conserved heterotrimer that is important for metabolic sensing in all eukaryotes. The muscle-specific isoform of the regulatory gamma-subunit of the kinase, AMP-activated protein kinase gamma3, has a key role in glucose and fat metabolism in skeletal muscle, as suggested by metabolic characterization of humans, pigs and mice harboring substitutions in the AMP-binding Bateman domains of gamma3. We demonstrate that AMP-activated protein kinase alpha2beta2gamma3 trimers are allosterically activated approximately three-fold by AMP with a half-maximal stimulation (A(0.5)) at 1.9 +/- 0.5 or 2.6 +/- 0.3 microm, as measured for complexes expressed in Escherichia coli or mammalian cells, respectively. We show that mutations in the N-terminal Bateman domain of gamma3 (R225Q, H306R and R307G) increased the A(0.5) values for AMP, whereas the fold activation of the enzyme by 200 microm AMP remained unchanged in comparison to the wild-type complex. The mutations in the C-terminal Bateman domain of gamma3 (H453R and R454G), on the other hand, substantially reduced the fold stimulation of the complex by 200 microm AMP, and resulted in AMP dependence curves similar to those of the double mutant, R225Q/R454G. A V224I mutation in gamma3, known to result in a reduced glycogen content in pigs, did not affect the fold activation or the A(0.5) values for AMP. Importantly, we did not detect any increase in phosphorylation of Thr172 of alpha2 by the upstream kinases in the presence of increasing concentrations of AMP. Taken together, the data show that different mutations in gamma3 exert different effects on the allosteric regulation of the alpha2beta2gamma3 complex by AMP, whereas we find no evidence for their role in regulating the level of phosphorylation of alpha2 by upstream kinases.  相似文献   

5.
The AMP-activated protein kinase (AMPK) is an important metabolic sensor/effector that coordinates many of the changes in mammalian tissues during variations in energy availability. We have sought to create an in vivo genetic model of chronic AMPK activation, selecting murine skeletal muscle as a representative tissue where AMPK plays important roles. Muscle-selective expression of a mutant noncatalytic gamma1 subunit (R70Qgamma) of AMPK activates AMPK and increases muscle glycogen content. The increase in glycogen content requires the presence of the endogenous AMPK catalytic alpha-subunit, since the offspring of cross-breeding of these mice with mice expressing a dominant negative AMPKalpha subunit have normal glycogen content. In R70Qgamma1-expressing mice, there is a small, but significant, increase in muscle glycogen synthase (GSY) activity associated with an increase in the muscle expression of the liver isoform GSY2. The increase in glycogen content is accompanied, as might be expected, by an increase in exercise capacity. Transgene expression of this mutant AMPKgamma1 subunit may provide a useful model for the chronic activation of AMPK in other tissues to clarify its multiple roles in the regulation of metabolism and other physiological processes.  相似文献   

6.
Muscle-specific isoform of the mitochondrial ATP synthase gamma subunit (F(1)gamma) was generated by alternative splicing, and exon 9 of the gene was found to be lacking particularly in skeletal muscle and heart tissue. Recently, we reported that alternative splicing of exon 9 was induced by low serum or acidic media in mouse myoblasts, and that this splicing required de novo protein synthesis of a negative regulatory factor (Ichida, M., Endo, H., Ikeda, U., Matsuda, C., Ueno, E., Shimada, K., and Kagawa, Y. (1998) J. Biol. Chem. 273, 8492-8501; Hayakawa, M., Endo, H., Hamamoto, T., and Kagawa, Y. (1998) Biochem. Biophys. Res. Commun. 251, 603-608). In the present report, we identified a cis-acting element on the muscle-specific alternatively spliced exon of F(1)gamma gene by an in vivo splicing system using cultured cells and transgenic mice. We constructed a F(1)gamma wild-type minigene, containing the full-length gene from exon 8 to exon 10, and two mutants; one mutant involved a pyrimidine-rich substitution on exon 9, whereas the other was a purine-rich substitution, abbreviated as F(1)gamma Pu-del and F(1)gamma Pu-rich mutants, respectively. Based on an in vivo splicing assay using low serum- or acid-stimulated splicing induction system in mouse myoblasts, Pu-del mutation inhibited exon inclusion, indicating that a Pu-del mutation would disrupt an exonic splicing enhancer. On the other hand, the Pu-rich mutation blocked muscle-specific exon exclusion following both inductions. Next, we produced transgenic mice bearing both mutant minigenes and analyzed their splicing patterns in tissues. Based on an analysis of F(1)gamma Pu-del minigene transgenic mice, the purine nucleotide of this element was shown to be necessary for exon inclusion in non-muscle tissue. In contrast, analysis of F(1)gamma Pu-rich minigene mice revealed that the F(1)gamma Pu-rich mutant exon had been excluded from heart and skeletal muscle of these transgenic mice, despite the fact mutation of the exon inhibited muscle-specific exon exclusion in myotubes of early embryonic stage. These results suggested that the splicing regulatory mechanism underlying F(1)gamma pre-mRNA differed between myotubes and myofibers during myogenesis and cardiogenesis.  相似文献   

7.
8.
Skeletal muscle resistance to the key metabolic hormones, leptin and insulin, is an early defect in obesity. Suppressor of cytokine signaling 3 (SOCS3) is a major negative regulator of both leptin and insulin signaling, thereby implicating SOCS3 in the pathogenesis of obesity and associated metabolic abnormalities. Here, we demonstrate that SOCS3 mRNA expression is increased in murine skeletal muscle in the setting of diet-induced and genetic obesity, inflammation, and hyperlipidemia. To further evaluate the contribution of muscle SOCS3 to leptin and insulin resistance in obesity, we generated transgenic mice with muscle-specific overexpression of SOCS3 (MCK/SOCS3 mice). Despite similar body weight, MCK/SOCS3 mice develop impaired systemic and muscle-specific glucose homeostasis and insulin action based on glucose and insulin tolerance tests, hyperinsulinemic-euglycemic clamps, and insulin signaling studies. With regards to leptin action, MCK/SOCS3 mice exhibit suppressed basal and leptin-stimulated activity and phosphorylation of alpha2 AMP-activated protein kinase (α2AMPK) and its downstream target, acetyl-CoA carboxylase (ACC). Muscle SOCS3 overexpression also suppresses leptin-regulated genes involved in fatty acid oxidation and mitochondrial function. These studies demonstrate that SOC3 within skeletal muscle is a critical regulator of leptin and insulin action and that increased SOCS may mediate insulin and leptin resistance in obesity.  相似文献   

9.
Skeletal muscle insulin resistance is a hallmark feature of Type 2 diabetes. Physical exercise/muscle contraction elicits an insulin-independent increase in glucose transport and perturbation of this pathway may bypass defective insulin signaling. To date, the exercise-responsive signaling molecules governing glucose metabolism in skeletal muscle are largely unknown. AMP-activated protein kinase (AMPK) has been suggested as one of the exercise-responsive signaling molecules involved in glucose homeostasis and consequently it has been heavily explored as a pharmacological target for the treatment of Type 2 diabetes. AMPK exists in heterotrimeric complexes composed of a catalytic alpha-subunit and regulatory beta- and gamma-subunits. The gamma3-isoform of AMPK is expressed specifically in skeletal muscle of humans and rodents and this tissue specific expression pattern offers selectivity in AMPK action. Furthermore, mutations in the AMPK gamma3-isoform may provide protection from diet-induced insulin resistance by increasing lipid oxidation in the presence of increased lipid supply. This review highlights the current understanding of the role of the regulatory AMPK gamma3-isoform in the control of skeletal muscle metabolism.  相似文献   

10.
Protein kinase C theta (PKC-theta) is the PKC isoform predominantly expressed in skeletal muscle, and it is supposed to mediate many signals necessary for muscle histogenesis and homeostasis, such as TGFbeta, nerve-dependent signals and insulin. To study the role of PKC-theta in these mechanisms we generated transgenic mice expressing a "kinase dead" mutant form of PKC-theta (PKC-thetaK/R), working as "dominant negative," specifically in skeletal muscle. These mice are viable and fertile, however, by the 6-7 months of age, they gain weight, mainly due to visceral fat deposition. Before the onset of obesity (4 months of age), they already show increased fasting and fed insulin levels and reduced insulin-sensitivity, as measured by ipITT, but normal glucose tolerance, as measured by ipGTT. After the 6-7 months of age, transgenic mice develop hyperinsulinemia in the fasting and fed state. The ipGTT revealed in the transgenic mice both hyperglycemia and hyperinsulinemia. At the molecular level, impaired activation of the IR/IRS/PI3K pathway and a significant decrease both in the levels and in insulin-stimulated activation of the serine/threonine kinase Akt were observed. Taken together these data demonstrate that over-expression of dominant negative PKC-theta in skeletal muscle causes obesity associated to insulin resistance, as demonstrated by defective receptor and post-receptorial activation of signaling cascade.  相似文献   

11.
Insulin resistance is a cardinal feature of normal pregnancy and excess growth hormone (GH) states, but its underlying mechanism remains enigmatic. We previously found a significant increase in the p85 regulatory subunit of phosphatidylinositol kinase (PI 3-kinase) and striking decrease in IRS-1-associated PI 3-kinase activity in the skeletal muscle of transgenic animals overexpressing human placental growth hormone. Herein, using transgenic mice bearing deletions in p85alpha, p85beta, or insulin-like growth factor-1, we provide novel evidence suggesting that overexpression of p85alpha is a primary mechanism for skeletal muscle insulin resistance in response to GH. We found that the excess in total p85 was entirely accounted for by an increase in the free p85alpha-specific isoform. In mice with a liver-specific deletion in insulin-like growth factor-1, excess GH caused insulin resistance and an increase in skeletal muscle p85alpha, which was completely reversible using a GH-releasing hormone antagonist. To understand the role of p85alpha in GH-induced insulin resistance, we used mice bearing deletions of the genes coding for p85alpha or p85beta, respectively (p85alpha (+/-) and p85beta(-/-)). Wild type and p85beta(-/-) mice developed in vivo insulin resistance and demonstrated overexpression of p85alpha and reduced insulin-stimulated PI 3-kinase activity in skeletal muscle in response to GH. In contrast, p85alpha(+/-)mice retained global insulin sensitivity and PI 3-kinase activity associated with reduced p85alpha expression. These findings demonstrated the importance of increased p85alpha in mediating skeletal muscle insulin resistance in response to GH and suggested a potential role for reducing p85alpha as a therapeutic strategy for enhancing insulin sensitivity in skeletal muscle.  相似文献   

12.
Moffat C  Ellen Harper M 《IUBMB life》2010,62(10):739-745
AMP-activated protein kinase, AMPK, is widely accepted as the master regulator of energy levels within the cell. Responding quickly to changing energy demands, AMPK works to restore levels of ATP during times of cellular stress by promoting ATP producing catabolic pathways and inhibiting ATP consuming anabolic ones. As a heterotrimeric protein complex, AMPK's subunits each act in unique and crucial ways to control AMPK function and its localization within the cell. Research in the last decade has identified and begun to characterize the impact of naturally occurring mutations in the gamma regulatory subunits. Mutations in the γ2 subunit have implications for cardiac function and disease, while the R225W mutation in the γ3 subunit have implications for skeletal muscle fuel metabolism and resistance to fatigue. Research focused on structure-function aspects of AMPK regulatory subunits will lead to a better understanding of the roles of AMPK in health and disease.  相似文献   

13.
Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids. It plays an important role in regulating skeletal muscle metabolism. Lack of the SCD1 gene increases the rate of fatty acid β-oxidation through activation of the AMP-activated protein kinase (AMPK) pathway and the upregulation of genes that are related to fatty acid oxidation. The mechanism of AMPK activation under conditions of SCD1 deficiency has been unclear. In the present study, we found that the ablation/inhibition of SCD1 led to AMPK activation in skeletal muscle through an increase in AMP levels whereas muscle-specific SCD1 overexpression decreased both AMPK phosphorylation and the adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio. Changes in AMPK phosphorylation that were caused by SCD1 down- and upregulation affected NAD+ levels following changes in NAD+-dependent deacetylase sirtuin-1 (SIRT1) activity and histone 3 (H3K9) acetylation and methylation status. Moreover, mice with muscle-targeted overexpression of SCD1 were more susceptible to high-fat diet-induced lipid accumulation and the development of insulin resistance compared with wild-type mice. These data show that SCD1 is involved in nucleotide (ATP and NAD+) metabolism and suggest that the SCD1-dependent regulation of muscle steatosis and insulin sensitivity are mediated by cooperation between AMPK- and SIRT1-regulated pathways. Altogether, the present study reveals a novel mechanism that links SCD1 with the maintenance of metabolic homeostasis and insulin sensitivity in skeletal muscle.  相似文献   

14.
Excessive intramyocellular triacylglycerols (IMTGs, muscle lipids) are associated with the abnormal energy metabolism and insulin resistance of skeletal muscle. AMP-activated protein kinase (AMPK), a crucial cellular energy sensor, consists of α, β and γ subunits. Researchers have not clearly determined whether Prkaa1 (also known as AMPKα1) affects IMTG accumulation in skeletal muscle. Here, we show an important role of Prkaa1 in skeletal muscle lipid metabolism. Deletion of muscle Prkaa1 leads to the delayed development of skeletal muscles but does not affect glucose tolerance or insulin sensitivity in animals fed a normal diet. Notably, when animals are fed a high-fat diet, the skeletal muscle of muscle-specific Prkaa1 knockout mice accumulates more lipids than the skeletal muscle of wild-type (WT) mice, with concomitant upregulation of adipogenic gene expressions and downregulation of the expression of genes associated with mitochondrial oxidation. Muscle-specific Prkaa1 ablation also results in hyperlipidemia, which may contribute to the increased IMTG levels. Furthermore, Prkaa1 deletion activates skeletal muscle mTOR signalling, which has a central role in lipid metabolism and mitochondrial oxidation. Collectively, our study provides new insights into the role of Prkaa1 in skeletal muscle. This knowledge may contribute to the treatment of related metabolic diseases.  相似文献   

15.
16.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

17.
Most rodent models of insulin resistance are accompanied by decreased circulating adiponectin levels. Adiponectin treatment improves the metabolic phenotype by increasing fatty acid oxidation in skeletal muscle and suppressing hepatic glucose production. Muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mice expressing dominant-negative mutant IGF-IRs in skeletal muscle are diabetic with insulin resistance in muscle, liver, and adipose tissue. Adiponectin levels are elevated in MKR mice, suggesting an unusual discordance between insulin resistance and adiponectin responsiveness. Therefore, we investigated the metabolic actions of adiponectin in MKR mice. MKR and ob/ob mice were treated both acutely (28 microg/g) and chronically (for 2 wk) with full-length adiponectin. Acute hypoglycemic effects of adiponectin were evident only in ob/ob mice but not in MKR mice. Chronic adiponectin treatment significantly improved both insulin sensitivity and glucose tolerance in ob/ob but not in MKR mice. Adiponectin receptor mRNA levels and adiponectin-stimulated phosphorylation of AMPK in skeletal muscle and liver were similar among MKR, wild-type, and ob/ob mice. Thus MKR mice are adiponectin resistant despite normal expression of adiponectin receptors and normal AMPK phosphorylation in muscle and liver. MKR mice may be a useful model for dissecting relationships between insulin resistance and adiponectin action in regulation of glucose homeostasis.  相似文献   

18.
Expression patterns of the three isoforms of the regulatory gamma-subunit of AMP-activated protein kinase (AMPK) were determined in various tissues from adult humans, mice, and rats, as well as in human primary muscle cells. Real-time PCR-based quantification of mRNA showed similar expression patterns in the three species and a good correlation with protein expression in mice and rats. The gamma3-isoform appeared highly specific to skeletal muscle, whereas gamma1 and gamma2 showed broad tissue distributions. Moreover, the proportion of white, type IIb fibers in the mouse and rat muscle samples, as indicated by real-time PCR quantification of Atp1b2 mRNA, showed a strong positive correlation with the expression of gamma3. In samples of white skeletal muscle, gamma3 clearly appeared to be the most abundant gamma-isoform. Differentiation of human primary muscle cells from myoblasts into multinucleated myotubes was accompanied by upregulation of gamma3 mRNA expression, whereas levels of gamma1 and gamma2 remained largely unchanged. However, even in these cultured myotubes, gamma2 was the most highly expressed isoform, indicating a considerable difference compared with adult skeletal muscle. Immunoblot analysis of mouse gastrocnemius and quadriceps muscle extracts precipitated with a gamma3-specific antibody showed that gamma3 was exclusively associated with the alpha2- and beta2-subunit isoforms. The observation that the AMPKgamma3 isoform is expressed primarily in white skeletal muscle, in which it is the predominant gamma-isoform, strongly suggests that gamma3 has a key role in this tissue.  相似文献   

19.
Acute or chronic activation of AMP-activated protein kinase (AMPK) increases insulin sensitivity. Conversely, reduced expression and/or function of AMPK might play a role in insulin resistance in type 2 diabetes. Thus protein expression of the seven subunit isoforms of AMPK and activities and/or phosphorylation of AMPK and acetyl-CoA carboxylase-beta (ACCbeta) was measured in skeletal muscle from obese type 2 diabetic and well-matched control subjects during euglycemic-hyperinsulinemic clamps. Protein expression of all AMPK subunit isoforms (alpha1, alpha2, beta1, beta2, gamma1, gamma2, and gamma3) in muscle of obese type 2 diabetic subjects was similar to that of control subjects. In addition, alpha1- and alpha2-associated activities of AMPK, phosphorylation of alpha-AMPK subunits at Thr172, and phosphorylation of ACCbeta at Ser221 showed no difference between the two groups and were not regulated by physiological concentrations of insulin. These data suggest that impaired insulin action on glycogen synthesis and lipid oxidation in skeletal muscle of obese type 2 diabetic subjects is unlikely to involve changes in AMPK expression and activity.  相似文献   

20.
Although mutations in the gamma-subunit of AMP-activated protein kinase (AMPK) can result in excessive glycogen accumulation and cardiac hypertrophy, the mechanisms by which this occurs have not been well defined. Because >65% of cardiac AMPK activity is associated with the gamma1-subunit of AMPK, we investigated the effects of expression of an AMPK-activating gamma1-subunit mutant (gamma1 R70Q) on regulatory pathways controlling glycogen accumulation and cardiac hypertrophy in neonatal rat cardiac myocytes. Whereas expression of gamma1 R70Q displayed the expected increase in palmitate oxidation rates, rates of glycolysis were significantly depressed. In addition, glycogen synthase activity was increased in cardiac myocytes expressing gamma1 R70Q, due to both increased expression and decreased phosphorylation of glycogen synthase. The inhibition of glycolysis and increased glycogen synthase activity were correlated with elevated glycogen levels in gamma1 R70Q-expressing myocytes. In association with the reduced phosphorylation of glycogen synthase, glycogen synthase kinase (GSK)-3beta protein and mRNA levels were profoundly decreased in the gamma1 R70Q-expressing myocytes. Consistent with GSK-3beta negatively regulating hypertrophy via inhibition of nuclear factor of activated T cells (NFAT), the dramatic downregulation of GSK-3beta was associated with increased nuclear activity of NFAT. Together, these data provide important new information about the mechanisms by which a mutation in the gamma-subunit of AMPK causes altered AMPK signaling and identify multiple pathways involved in regulating both cardiac myocyte metabolism and growth that may contribute to the development of the gamma mutant-associated cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号