首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is transported to apical membranes in CMV-infected polarized retinal pigment epithelial (ARPE-19) cells and in Madin-Darby canine kidney (MDCK) epithelial cells constitutively expressing gB. The cytosolic domain of gB contains a cluster of acidic amino acids, a motif that plays a pivotal role in vectorial trafficking in polarized epithelial cells and may also function as a signal for entry into the endocytic pathway. Here we compared gB internalization and recycling to the plasma membrane in CMV-infected human fibroblasts (HF) and ARPE-19 cells by using antibody-internalization experiments. Immunofluorescence and quantitative assays showed that gB was internalized from the cell surface into clathrin-coated transport vesicles and then recycled to the plasma membrane. gB colocalized with clathrin-coated vesicles containing the transferrin receptor in the early endocytic/recycling pathway, indicating that gB traffics in this pathway. The specific role of the acidic cluster in regulating the sorting of gB-containing vesicles in the early endocytic/recycling pathway was examined in MDCK cells expressing mutated gB derivatives. Immunofluorescence assays showed that derivatives lacking the acidic cluster were impaired in internalization and failed to recycle. These findings, together with our earlier observation that the acidic cluster is a key determinant for targeting gB molecules to apical membranes in epithelial cells, establish that this signal is recognized by cellular proteins that participate in polarized sorting and transport in the early endocytic/recycling pathway.  相似文献   

2.
The herpes simplex virus 1 (HSV-1) glycoprotein K (gK)/UL20 protein complex is incorporated into virion envelopes and cellular membranes and functions during virus entry and cell-to-cell spread. To investigate the role of gK/UL20 in the context of a highly neurovirulent virus strain, the HSV-1(McKrae) genome was cloned into a bacterial artificial chromosome plasmid (McKbac) and utilized to construct the mutant virus McK(gKΔ31-68), carrying a 37-amino-acid deletion within the gK amino terminus. The McKbac virus entered efficiently into Chinese hamster ovary (CHO) cells constitutively expressing HSV-1 human receptors, nectin-1, herpesvirus entry mediator (HVEM), or paired immunoglobulin-like type-2 receptor alpha (PILRα). In contrast, the McK(gKΔ31-68) virus failed to enter into CHO-PILRα cells, while it entered CHO cells expressing HVEM and nectin-1 more efficiently than the McKbac virus. Both McKbac and McK(gKΔ31-68) viruses entered all CHO cells expressing HSV-1 receptors via a pH-independent pathway. The HSV-1(F) gBΔ28syn mutant virus, encoding a carboxyl-terminal truncated gB, causes extensive cell fusion. Previously, we showed that the gKΔ31-68 amino acid deletion abrogated gBΔ28syn virus-induced cell fusion, indicating that the amino terminus of gK is required for gB-mediated virus-induced cell fusion (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. J. Kousoulas, Virology 83:12301–12313, 2009). Surprisingly, the gKΔ31-68/gBΔ28syn virus caused extensive fusion of CHO-nectin-1 cells but limited cell fusion of CHO-PILRα cells. Coimmunoprecipitation experiments revealed that both gK and PILRα bound gB in infected cells. Collectively, these results indicate that the amino terminus of gK is functionally and physically associated with the gB-PILRα protein complex and regulates membrane fusion of the viral envelope with cellular membranes during virus entry as well as virus-induced cell-to-cell fusion.  相似文献   

3.
All basolateral sorting signals described to date reside in the cytoplasmic domain of proteins, whereas apical targeting motifs have been found to be lumenal. In this report, we demonstrate that wild-type rhodopsin is targeted to the apical plasma membrane via the TGN upon expression in polarized epithelial MDCK cells. Truncated rhodopsin with a deletion of 32 COOH-terminal residues shows a nonpolar steady-state distribution. Addition of the COOH-terminal 39 residues of rhodopsin redirects the basolateral membrane protein CD7 to the apical membrane. Fusion of rhodopsin''s cytoplasmic tail to a cytosolic protein glutathione S-transferase (GST) also targets this fusion protein (GST–Rho39Tr) to the apical membrane. The targeting of GST–Rho39Tr requires both the terminal 39 amino acids and the palmitoylation membrane anchor signal provided by the rhodopsin sequence. The apical transport of GST–Rho39Tr can be reversibly blocked at the Golgi complex by low temperature and can be altered by brefeldin A treatment. This indicates that the membrane-associated GST–Rho39Tr protein may be sorted along a yet unidentified pathway that is similar to the secretory pathway in polarized MDCK cells. We conclude that the COOH-terminal tail of rhodopsin contains a novel cytoplasmic apical sorting determinant. This finding further indicates that cytoplasmic sorting machinery may exist in MDCK cells for some apically targeted proteins, analogous to that described for basolaterally targeted proteins.  相似文献   

4.
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75–green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery.  相似文献   

5.
The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.  相似文献   

6.
CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells.  相似文献   

7.
The asymmetric distribution of proteins to basolateral and apical membranes is an important feature of epithelial cell polarity. To investigate how basolateral LAP proteins (LRR (for leucine-rich repeats) and PDZ (for PSD-95/Discs-large/ZO-1), which play key roles in cell polarity, reach their target membrane, we carried out a structure–function study of three LAP proteins: Caenorhabditis elegans LET-413, human Erbin and human Scribble (hScrib). Deletion and point mutation analyses establish that their LRR domain is crucial for basolateral membrane targeting. This property is specific to the LRR domain of LAP proteins, as the non-LAP protein SUR-8 does not localize at the basolateral membrane of epithelial cells, despite having a closely related LRR domain. Importantly, functional studies of LET-413 in C. elegans show that although its PDZ domain is dispensable during embryogenesis, its LRR domain is essential. Our data establish a novel paradigm for protein localization by showing that a subset of LRR domains direct subcellular localization in polarized cells.  相似文献   

8.
Epithelial cells line virtually every organ cavity in the body and are important for vectorial transport through epithelial monolayers such as nutrient uptake or waste product excretion. Central to these tasks is the establishment of epithelial cell polarity. During organ development, epithelial cells set up two biochemically distinct plasma membrane domains, the apical and the basolateral domain. Targeting of correct constituents to each of these regions is essential for maintaining epithelial cell polarity. Newly synthesized transmembrane proteins destined for the basolateral or apical membrane domain are sorted into separate transport carriers either at the TGN (trans-Golgi network) or in perinuclear REs (recycling endosomes). After initial delivery, transmembrane proteins, such as nutrient receptors, frequently undergo multiple rounds of endocytosis followed by re-sorting in REs. Recent work in epithelial cells highlights the REs as a potent sorting station with different subdomains representing individual targeting zones that facilitate the correct surface delivery of transmembrane proteins.  相似文献   

9.
Carboxypeptidase M, a glycosylphosphatidylinositol-anchored membrane glycoprotein, is highly expressed in Madin-Darby canine kidney (MDCK) cells, where it was previously shown that the glycosylphosphatidylinositol anchor and N-linked carbohydrate are apical targeting signals. Here, we show that carboxypeptidase M has an unusual, non-polarized distribution, with up to 44% on the basolateral domain of polarized MDCK cells grown on semipermeable inserts. Alkaline phosphatase, as well as five other glycosylphosphatidylinositol-anchored proteins, and transmembrane gamma-glutamyl transpeptidase exhibited the expected apical localization. Basolateral carboxypeptidase M was readily released by exogenous phosphatidylinositol-specific phospholipase C, showing it is glycosylphosphatidylinositol-anchored, whereas apical carboxypeptidase M was more resistant to release. In contrast, the spontaneous release of carboxypeptidase M into the medium was much higher on the apical than the basolateral domain. In pulse-chase studies, newly synthesized carboxypeptidase M arrived in equal amounts within 30 min on both domains, indicating direct sorting. After 4-8 h of chase, the steady-state distribution was attained, possibly due to transcytosis from the basolateral to the apical domain. These data suggest the presence of a unique basolateral targeting signal in carboxypeptidase M that competes with its apical targeting signals, resulting in a non-polarized distribution in MDCK cells.  相似文献   

10.
The distinct protein and lipid constituents of the apical and basolateral membranes in polarized cells are sorted by specific signals. O-Glycosylation of a highly polarized intestinal brush-border protein sucrase isomaltase is implicated in its apical sorting through interaction with sphingolipid-cholesterol microdomains. We characterized the structural determinants required for this mechanism by focusing on two major domains in pro-SI, the membrane anchor and the Ser/Thr-rich stalk domain. Deletion mutants lacking either domain, pro-SI(DeltaST) (stalk-free) and pro-SI(DeltaMA) (membrane anchor-free), were constructed and expressed in polarized Madin-Darby canine kidney cells. In the absence of the membrane anchoring domain, pro-SI(DeltaMA) does not associate with lipid rafts and the mutant is randomly delivered to both membranes. Therefore, the O-glycosylated stalk region is not sufficient per se for the high fidelity of apical sorting of pro-SI. Pro-SI(DeltaST) does not associate either with lipid rafts and its targeting behavior is similar to that of pro-SI(DeltaMA). Only wild type pro-SI containing both determinants, the stalk region and membrane anchor, associates with lipid microdomains and is targeted correctly to the apical membrane. However, not all sequences in the stalk region are required for apical sorting. Only O-glycosylation of a stretch of 12 amino acids (Ala(37)-Pro(48)) juxtapose the membrane anchor is required in conjunction with the membrane anchoring domain for correct targeting of pro-SI to the apical membrane. Other O-glycosylated domains within the stalk (Ala(49)-Pro(57)) are not sufficient for apical sorting. We conclude that the recognition signal for apical sorting of pro-SI comprises O-glycosylation of the Ala(37)-Pro(48) stretch and requires the presence of the membrane anchoring domain.  相似文献   

11.
The composition of the plasma membrane domains of epithelial cells is maintained by biosynthetic pathways that can sort both proteins and lipids into transport vesicles destined for either the apical or basolateral surface. In MDCK cells, the influenza virus hemagglutinin is sorted in the trans-Golgi network into detergent-insoluble, glycosphingolipid-enriched membrane domains that are proposed to be necessary for sorting hemagglutinin to the apical cell surface. Site- directed mutagenesis of the hemagglutinin transmembrane domain was used to test this proposal. The region of the transmembrane domain required for apical transport included the residues most conserved among hemagglutinin subtypes. Several mutants were found to enter detergent-insoluble membranes but were not properly sorted. Replacement of transmembrane residues 520 and 521 with alanines converted the 2A520 mutant hemagglutinin into a basolateral protein. Depleting cell cholesterol reduced the ability of wild-type hemagglutinin to partition into detergent-insoluble membranes but had no effect on apical or basolateral sorting. In contrast, cholesterol depletion allowed random transport of the 2A520 mutant. The mutant appeared to lack sorting information but was prevented from reaching the apical surface when detergent-insoluble membranes were present. Apical sorting of hemagglutinin may require binding of either protein or lipids at the middle of the transmembrane domain and this normally occurs in detergent-insoluble membrane domains. Entry into these domains appears necessary, but not sufficient, for apical sorting.  相似文献   

12.
We report that unprocessed tobacco pectin methylesterase (PME) contains N-terminal pro-sequence including the transmembrane (TM) domain and spacer segment preceding the mature PME. The mature portion of PME was replaced by green fluorescent protein (GFP) gene and various deletion mutants of pro-sequence fused to GFP were cloned into binary vectors and agroinjected in Nicotiana benthamiana leaves. The PME pro-sequence delivered GFP to the cell wall (CW). We showed that a transient binding of PME TM domain to endoplasmic reticulum membranes occurs upon its transport to CW. The CW targeting was abolished by various deletions in the TM domain, i.e., anchor domain was essential for secretion of GFP to CW. By contrast, even entire deletion of the spacer segment had no influence on GFP targeting.  相似文献   

13.
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.  相似文献   

14.
Current model propose that in nonpolarized cells, transport of plasma membrane proteins to the surface occurs by default. In contrast, compelling evidence indicates that in polarized epithelial cells, plasma membrane proteins are sorted in the TGN into at least two vectorial routes to apical and basolateral surface domains. Since both apical and basolateral proteins are also normally expressed by both polarized and nonpolarized cells, we explored here whether recently described basolateral sorting signals in the cytoplasmic domain of basolateral proteins are recognized and used for post TGN transport by nonpolarized cells. To this end, we compared the inhibitory effect of basolateral signal peptides on the cytosol-stimulated release of two basolateral and one apical marker in semi-intact fibroblasts (3T3), pituitary (GH3), and epithelial (MDCK) cells. A basolateral signal peptide (VSVGp) corresponding to the 29-amino acid cytoplasmic tail of vesicular stomatitis virus G protein (VSVG) inhibited with identical potency the vesicular release of VSVG from the TGN of all three cell lines. On the other hand, the VSVG peptide did not inhibit the vesicular release of HA in MDCK cells not of two polypeptide hormones (growth hormone and prolactin) in GH3 cells, whereas in 3T3 cells (influenza) hemagglutinin was inhibited, albeit with a 3x lower potency than VSVG. The results support the existence of a basolateral-like, signal-mediated constitutive pathway from TGN to plasma membrane in all three cell types, and suggest that an apical-like pathway may be present in fibroblast. The data support cargo protein involvement, not bulk flow, in the formation of post-TGN vesicles and predict the involvement of distinct cytosolic factors in the assembly of apical and basolateral transport vesicles.  相似文献   

15.
The human non-gastric H,K-ATPase, ATP1AL1, belongs to the gene family of P-type ATPases. Consistent with their physiological roles in ion transport, members of this group, including the Na,KATPase and the gastric and non-gastric H,K-ATPases, are differentially polarized to either the basolateral or apical plasma membrane in epithelial cells. However, their polarized distribution is highly complex and depends on specific sorting signals or motifs which are recognized by the subcellular targeting machinery. For the gastric H,K-ATPase it has been suggested that the 4(th) transmembrane spanning domain (TM4) and its flanking regions induce conformational sorting motifs which direct the ion pump exclusively to the epithelial apical membrane. Here, we show in transfected Madin-Darby canine kidney (MDCK) cells that the related non-gastric H,KATPase, ATP1AL1, does contain similar sorting motifs in close proximity to TM4. A short extracellular loop between TM3 and TM4 is critical for this pump's apical delivery. A single point mutation in the corresponding region redirects ATP1AL1 to the basolateral membrane. In conclusion, our work provides further evidence that the cellular distribution of P-type ATPases is determined by conformational sorting motifs.  相似文献   

16.
Dipeptidyl peptidase IV (DPPIV) is mainly vectorially targeted to the apical surface in MDCK cells. BFA was found to abolish the apical targeting of DPPIV. This BFA effect could be achieved under conditions where the ER to Golgi transport and the total surface expression of DPPIV were essentially unaffected. BFA executed its effect during the transport from the trans-Golgi network (TGN) to the surface. The inhibition of apical targeting resulted in enhanced mis-targeting to the basolateral surface. The mistargeted DPPIV was transcytosed back to the apical domain only after BFA withdrawal. In contrast, the basolateral targeting of uvomorulin was unaffected by BFA. These results established that the apical targeting of DPPIV was selectively abolished by BFA.  相似文献   

17.
PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288: C20–C29, 2005; doi:10.1152/ajpcell.00368.2004.—The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes. retention of apical and basolateral membrane proteins; transducisomes; protein complex formation  相似文献   

18.
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24-29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.  相似文献   

19.
Epithelial cells display distinct apical and basolateral membrane domains, and maintenance of this asymmetry is essential to the function of epithelial tissues. Polarized delivery of apical and basolateral membrane proteins from the trans Golgi network (TGN) and/or endosomes to the correct domain requires specific cytoplasmic machinery to control the sorting, budding and fission of vesicles. However, the molecular machinery that regulates polarized delivery of apical proteins remains poorly understood. In this study, we show that the small guanosine triphosphatase Rab14 is involved in the apical targeting pathway. Using yeast two-hybrid analysis and glutathione S-transferase pull down, we show that Rab14 interacts with apical membrane proteins and localizes to the TGN and apical endosomes. Overexpression of the GDP mutant form of Rab14 (S25N) induces an enlargement of the TGN and vesicle accumulation around Golgi membranes. Moreover, expression of Rab14-S25N results in mislocalization of the apical raft-associated protein vasoactive intestinal peptide/MAL to the basolateral domain but does not disrupt basolateral targeting or recycling. These data suggest that Rab14 specifically regulates delivery of cargo from the TGN to the apical domain.  相似文献   

20.
In well-differentiated human airway epithelia, the coxsackie B and adenovirus type 2 and 5 receptor (CAR) resides primarily on the basolateral membrane. This location may explain the observation that gene transfer is inefficient when adenovirus vectors are applied to the apical surface. To further test this hypothesis and to investigate requirements and barriers to apical gene transfer to differentiated human airway epithelia, we expressed CAR in which the transmembrane and cytoplasmic tail were replaced by a glycosyl-phosphatidylinositol (GPI) anchor (GPI-CAR). As controls, we expressed wild-type CAR and CAR lacking the cytoplasmic domain (Tailless-CAR). All three constructs enhanced gene transfer with similar efficiencies in fibroblasts. In airway epithelia, GPI-CAR localized specifically to the apical membrane, where it bound adenovirus and enhanced gene transfer to levels obtained when vector was applied to the basolateral membrane. Moreover, GPI-CAR facilitated gene transfer of the cystic fibrosis transmembrane conductance regulator to cystic fibrosis airway epithelia, correcting the Cl(-) transport defect. In contrast, when we expressed wild-type CAR it localized to the basolateral membrane and failed to increase apical gene transfer. Only a small amount of Tailless-CAR resided in the apical membrane, and the effects on apical virus binding and gene transfer were minimal. These data indicate that binding of adenovirus to an apical membrane receptor is sufficient to mediate effective gene transfer to human airway epithelia and that the cytoplasmic domain of CAR is not required for this process. The results suggest that targeting apical receptors in differentiated airway epithelia may be sufficient for gene transfer in the genetic disease cystic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号