首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The development of embryo sacs (ES) in vitro and induction of gynogenesis were studied in onion flower bud culture. Explants were divided into three groups according to their size at inoculation: (a) small flower buds (2.3–3.0 mm in diameter); (b) medium flower buds (3.1–3.7 mm); and (c) large flower buds (3.8–4.4 mm). For histological study, excised ovaries were fixed at inoculation and then at 3-d intervals until day 12, and after 2 and 3 wk of culture. Some explants were cultured until embryo emergence, i.e., 3–5 mo. In total, 2592 ovules were examined histologically. At inoculation, 83% of ovules in small flower buds contained a megaspore mother cell; in 17% of ovules, two-nucleate ES occurred. In medium flower buds two-nucleate, four-nucleate, and mature ES were present at frequencies of 15%, 46%, and 40%, respectively. In large flower buds, only mature ES occurred. In vitro conditions did not disturb meiosis and megagametophyte development in non-degenerated ovules. Regardless of the developmental stage at inoculation, only mature ES occurred on day 12. Gynogenic embryos were found after 2 wk of culture, indicating that embryos developed in mature ES exclusively. Embryos were detected in 5.4% of histological studied ovules; however, the number of embryos after 3–5 mo. was higher (12.4%). The parthenogenetic origin of the embryos is discussed. In addition, ES containing endosperm only (6.5%) and both endosperm and embryo (0.4%) were observed.  相似文献   

2.
Factors influencing reliable shoot regeneration from leaf explants of rapeseed (Brassica napus L.) were examined. Addition of AgNO3 to callus induction medium was significantly effective for shoot regeneration in all three genotypes initially tested. When 48 genotypes subsequently were surveyed, a large variation of shoot regenerability was observed, ranging from 100 to 0% in frequency of bud formation and from 7.5 to 0 in the number of buds per explant. A significant correlation (r=0.84) was observed between the frequency of bud formation and the number of buds per explant. The shoot regenerability from leaf explants was not related to that from cotyledonary explants (r=0.28). Histological observations showed that an organized structure developed from calluses produced at vascular bundle tissues after 7 days of culture on callus induction medium, and they developed shoot apical meristems one week after transfer onto shoot induction medium. Regenerated plantlets were obtained 2 months after the initiation of culture and they normally flowered and set seeds. No alterations of morphology or DNA contents were observed in regenerated plants and their S1 progenies.  相似文献   

3.
Summary Direct shoot and cormlet regeneration from leaf explants were obtained in triploid dessert banana cultivar Nanjanagud Rasabale (NR) that is classified under the group ‘Silk’ and has the genotype AAB. The response for both cormlet and direct shool formation was observed only in leaf explants obtained from shoots cultured in liquid medium but not in similar explants obtained from shoots grown on gelled medium. Shoot initiation occurred after a sequential culture of leaf (sheath) explants on modified Murashige and Skoog (MS) medium supplemented with different growth regulators. In the sequence, the leaf explants were cultured first on medium with a high level (22.4 μM) of benzyladenine (BA), second on indolc-3-butyric acid (IBA) supplemented medium, and third on reduced BA medium under incubation in the dark. The highest adventitious shoot regeneration in 24% of the explants, with the number of shoots ranging from 2 to 3 per explant, occurred in the explants incubated at the first step in medium with 22.4 and 0.198 μM IBA. Further growth and complete shoot formation occurred under incubation in a 16-h photoperiod. While keeping the culture conditions constant and replacing BA with picloram (0.83–20.71 μM) in the initial step, adventious origin of cormlets occurred in 12% of the explants. However, when rhizome explants (also obtained from shoots grown in liquid medium) were cultured with various growth regulators in the first step, medium containing 2,4,5-trichlorophenoxyacctic acid (7.82 μM) produced friable callus that re-differentiated into roots only. Physical forms of the medium, ie.e. agar-gelled or liquid, imparted specific effects on the extent of multiplication of leaf-regenerated shoots with no differences in morphology and growth patterns when compared to those of meristem-derived plants.  相似文献   

4.
Foliar explants of Nicotiana tabacum cv Xanthi n.c. were cultured on four different media: a basal medium, basal medium plus benzyladenine, basal medium plus 2,4-dichlorophenoxyacetic acid (2,4-D), and the basal medium containing both hormones. No differentiation or cell division occurred in leaf explants cultured on the basal medium. Addition of benzyladenine caused the formation of buds on the explants, while 2,4-D caused callus formation and proliferation. Likewise, only callus was formed when explants were cultured on medium containing both hormones, but growth was significantly greater than that of callus grown on a medium containing 2,4-D alone. The levels of amines and hydroxycinnamoyl putrescines were determined in the four types of explants. In nongrowing explants, amines (except an aromatic amine, tyramine) and hydroxycinnamoyl putrescines were always at a low level and only small changes in their concentrations were observed. In callus cultures, amine (except an aromatic amine, phenethylamine) and hydroxycinnamoyl putrescine levels were higher than those found in bud cultures. In all the media, transitory accumulation of aromatic amines occurred after a few days of culture. Higher levels of hydroxycinnamoyl putrescines were attained in callus cultures with a slow growth rate (2,4-D alone) than in callus cultures with a fast growth rate (benzyladenine + 2,4-D). The formation of buds was accompanied by significant changes in putrescine and hydroxycinnamoyl putrescine levels. Increasing levels were found during the first 14 days in culture when cell multiplication was rapid, followed by a sharp decline after 20 days in culture as the rate of cell division decreased and differentiation took place. The relationship among amines, hydroxycinnamoyl putrescines, and cell division and bud formation is discussed.  相似文献   

5.
Summary In researching the application of genetic transformation to lily breeding, callus formation from cultured explants and plant regeneration from induced calluses were examined in 33 Lilium genotypes, 21 species, three Asiatic hybrids, two LA hybrids, two Longiflorum hybrids, three Oriental hybrids, and two Trumpet hybrids. Seed, bulb scale, leaf, or filament explants were placed on a medium containing 4.1 μM 4-amino-3,5,6-trichloropicolinic acid (picloram; PIC) and cultured in the dark. After 2 mo., callus formation was observed in 30 genotypes, and a formation frequency of more than 50% was obtained in 24 genotypes. Bulb scale and filament explants showed great ability to form calluses, whereas seeds had poor ability. Most of the induced calluses were yellow and had a nodular appearance. When subcultured onto the same fresh medium, twofold or more increases in callus mass were obtained in 1 mo. for 15 genotypes. Callus lines showing sustained growth 1 yr after the initiation of subculture were examined for their ability to produce shoots on a medium without plant growth regulators (PGRs) and a medium containing 22 μM 6-benzyladenine (BA). Shoot regeneration was observed in all genotypes examined, and a regeneration frequency of over 80% was obtained in 20 genotypes. Initial explants used for callus induction and callus type (nodular or friable) had no effect on shoot regeneration. Most of the regenerated shoots developed into complete plantlets following their transfer to a PGR-free medium.  相似文献   

6.
Summary Factors affecting in vitro shoot production and regeneration of Cercis yunnanensis Hu et Cheng were investigated by comparing various growth regulators and explant types. For optimum shoot production from axillary buds, Murashige and Skoog (MS) media containing 6-benzyladenine, either alone or in combination with a low concentration of thidiazuron, resulted in the greatest number of shoots formed per explant (>3). Explants (2 mm long) containing one axillary bud placed in directcontact with the medium yielded the most shoots per bud (1.6) when grown on growth regulator-free medium. Root formation on 70–80% of shoot explants was accomplished using either indole-3-butyric acid or α-naphthaleneacetic acid in the medium, with significantly more roots formed on explants possessing and apical bud than those without the bud. Direct shoot organogenesis from leaf explants occurred on MS medium containing 10–30 μM thidiazuron, with up to 42% of leaf explants producing shoots.  相似文献   

7.
Summary Tylophora indica (Burm. f.) Merrill is a threatened medicinal climber distributed in the forests of northern and peninsular India. An efficient and reproducible protocol for high-frequency callus regeneration from immature leaf explants of T. indica was developed. Organogenic callus formation from immature leaf pieces was obtained by using Murashige and Skoog (MS) medium supplemented with 7 μM 2,4-dichlorophenoxyacetic acid and 1.5 μM 6-benzyladenine. On this medium 92% explants produced callus. The optimal hormone combination for plantlet regeneration was 8 μM thidiazuron, at which shoot regeneration was obtained from 100% of the cultures, with an average of 66.7 shoots per culture. Histological studies of the regenerative callus revealed that shoot buds were originated from the outermost regions. For root formation, half-strength MS medium supplemented with 3 μM indole-3-butyric acid was used. Plants were transferred to soil, where 92% survived after 3 mo. of acclimatization.  相似文献   

8.
Summary Flower buds and anthers of the short-day plant Pharbitis nil were treated either with thermic shock (7 or 35°C) or osmotic/trophic shock (12% sucrose) for 24 h. Explants were transferred either to Murashige and Skoog medium (MS) with addition of 6-benzylaminopurine (BA; 4.4μM) and 6% sucrose or to the same growth medium containing 22 μM BA and 3% sucrose. Both media were supplemented with α-naphthaleneacetic acid (NAA; 0.55 μM). Osmotic/trophic shock stimulated the occurrence of shoots on flower buds grown on medium containing 22 μM BA. Thermic shock (7 and 35°C) inhibited this process on both types of explants. Regenerated plantlets were transferred to MS medium supplemented with 6% sucrose, gibberellic acid (GA3; 1.44μM), NAA (0.55 μM) and Ca2+ (0.66 mgl−1). After 3–4 wk they were able to produce flowers without photoperiodic induction.  相似文献   

9.
Summary A viable protocol has been developed for direct and indirect shoot regeneration of Vernonia cinerea. To establish a stable and high-frequency plant regeneration system, leaf and stem explants were tested with different combinations of α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and benzylaminopurine (BA). Lateral buds on nodal explants grew into shoots within 2 wk of culture in Murashige and Skoog (MS) basal medium supplemented with 20.9 μM BA. Excision and culture of nodal segments from in vitro-raised shoots on fresh medium with the same concentration of BA facilitated development of more than 15 shoots per node. Similarly leaf, nodal, and internodal explants were cultured on MS basal medium supplemented with different concentrations of BA, NAA, and IAA either alone or in combinations for callus induction and organogenesis. Shoot buds and/or roots were regenerated on callus. Shoot buds formed multiple shoots within 4 wk after incubation in induction medium. Adventitious buds and shoots proliferated when callus was cut into pieces and subcultured on MS basal medium containing 20.9 μM BA and 5.3 μM NAA. This combination proved to be the best medium for enhanced adventitious shoot bud multiplication, generating a maximum of 50 shoots in 4 wk. This medium was also used successfully for shoot proliferation in liquid medium. Root formation was observed from callus induced in medium containing 8.05–13.4 μM NAA. Regenerated shoots exhibited flowering and root formation in MS basal medium without any growth regulators. Plantlets established in the field showed 85% survival and exhibited identical morphological characteristics as the donor plant.  相似文献   

10.
Melia azedarach has great interest because of its insecticidal properties. Recently, the occurrence of precocious flowering in tissue cultures of this species was reported. This paper describes some in vitro morphogenetic responses using hypocotyl segments as explants and MS basal medium. Amongst the results we report are: (a) in basal medium, 5% of the explants neo-formed floral buds and flowers, and 80% formed vegetative shoots; (b) flower neo-formation could not be controlled or increased by addition of benzyladenine, or lowering the nitrogen level; (c) benzyladenine increased the regeneration of vegetative shoots; (d) compact green calluses were eventually formed in basal medium, and vigorous friable calluses can be easily induced with 0.5 mM 2,4-D; (e) green calluses could be subcultured and regenerated into plants, and, from friable calluses, cell suspensions were started; (f) histological studies showed that neo-formations originate in the wound tissue or from the inner tissue of the hypocotyl.  相似文献   

11.
A mass in vitro propagation system for Bacopa monniera (L.) Wettst. (Scrophulariaceae), a medicinally important plant, has been developed. A range of cytokinins have been investigated for multiple shoot induction with node, internode and leaf explants. Of the four cytokinins (6-benzyladenine, thidiazuron, kinetin and 2-isopentenyladenine) tested thidiazuron (6.8 μM) and 6-benzyladenine (8.9 μM) proved superior to other treatments. Optimum adventitious shoot buds induction occurred at 6.8 μM thidiazuron where an average of 93 shoot buds were produced in leaf explants after 7 weeks of incubation. However, subculture of leaf explants on medium containing 2.2 μM benzyladenine yielded a higher number (129.1) of adventitious shoot buds by the end of third subculture. The percentage shoot multiplication (100%) as well as the number of shoots per explant remained the high during the first 3 subculture cycles, facilitating their simultaneous harvest for rooting. In vitro derived shoots were elongated on growth regulator-free MS medium and exhibited better rooting response on medium containing 4.9 μM IBA. After a hardening phase of 3 weeks, there was an almost 100% transplantation success in the field. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
A system for in vitro regeneration of Aloe arborescens was developed using young inflorescences as explants. Different phytohormone combinations of N-phenyl-N′-1,2,3-thiadiazol-5-yl urea (TDZ), benzyladenine (BA), 6-(γ,γ-dimethylallyl-amino)purine riboside (2iPR), zeatin ribozide (ZR), N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and kinetin (K), with or without ancymidol, were examined in order to induce plant regeneration. Efficient shoot regeneration was initiated on Murashige and Skoog (MS) medium supplemented with BA or TDZ. MS medium enriched with 19.6, 22.2 μM BA and 3.92 μM ancymidol (MSBA5/1 medium), promoted organogenesis enabling 87.3% of the explants to regenerate 6.04 ± 1.79 shoots/explant. Subsequent shoot elongation and plant regeneration were strongly affected by the medium composition used for shoot induction. Optimal elongation (three to four shoots per explant) was obtained when shoots, initiated on MSBA5/1 medium, were subsequently transferred onto MS containing only 4.4 μM BA. Rooting was performed on MS media lacking growth regulators. Histological analysis revealed that the initiated shoots originated from the receptacle tissue surrounding the residual vascular tissue of the flower buds.  相似文献   

13.
In vitro studies were initiated with Withania somnifera (L.) Dun. for rapid micropropagation of selected chemotypes using nodes, internodes, hypocotyls and embryo explants. Direct regeneration of shoot buds was observed in MS basal medium supplemented with various concentrations of either benzyladenine (BA) or thidiazouron (TDZ) depending on the explant. Nodal explants formed multiple shoots both from pre-existing and de novo buds on Murashige and Skoog's medium (MS) containing 0.1–5.0 mg l−1 BA and a ring of de novo shoot buds on MS medium containing 0.2 and 0.3 mg l−1 TDZ. Internodal explants formed shoot buds on MS with 1.0 and 5.0 mg l−1 BA while the hypocotyl explants gave rise to multiple shoots only on MS with 0.5 mg l−1 BA. Isolated embryos gave rise to many shoot buds on MS with 0.2 and 0.3 mg l−1 TDZ. The shoot buds elongated and rooted either on MS medium with 0.01 mg l−1 BA or on half strength MS medium lacking growth regulators, which depended upon the growth regulator used in the shoot bud induction medium. Except for the embryo-derived plantlets, all other plantlets could be acclimatized with 100% success. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Experiments were performed to determine the influence of gibberellic acid (GA3) and benzyladenine (BA) on organogenesis of lsquo;Crimson Giantrsquo; Easter cactus [Hatiora gaertneri (Regel) Barthlott] phylloclades cultured in vitro. The numbers of flower buds and new phylloclades increased linearly as BA concentration increased from 0 to 444.1 micro;M. GA3 increased the number of new phylloclades when present in moderate concentrations (2.9 or 28.9 micro;M), but inhibited flower bud formation when present in concentrations as low as 0.3 micro;M. The inhibitory effect of GA3 on flower bud formation was diminished when the medium was amended with BA at 44.4 or 444.1 micro;M. Explants cultured in media that contained 288.7 micro;M GA3 produced fewer organs (new phylloclades plus flower buds) compared to those cultured in media with 0, 0.3, 2.9, or 28.9 micro;M GA3. BA and GA3 concentrations also affected the percentage of explants with flower buds and the percentage of explants with new phylloclades. This study shows that organogenesis in H. gaertneri can be controlled by varying the concentrations of BA and GA3 in the culture medium.  相似文献   

15.
The effectiveness of X-radiation on regeneration of adventitious buds on in vitro leaf explants of three Rosa hybrida L. genotypes was studied. In vitro leaflet explants of roses produced adventitious buds when cultured in the dark for 1 week on Murashige and Skoog (MS) induction medium containing 6.8 μM thidiazuron (TDZ) + 0.49 μM indole-3-butyric acid (IBA) and subsequently transferred to MS regeneration medium containing 2.2 μM benzyladenine (BA) + 0.049 μM IBA in the presence of reduced light, at 15 μmol m-2 s-1 photosynthetically active radiation (PAR). Analysis of radiosensitivity by irradiating leaf explants with increasing doses of X-rays between 25 and 100 Gray (Gy) resulted in a decreasing rate of leaf explants regenerating buds from 47% to 0% respectively. The lethal dose for 50% of the regenerating explants (LD50) in all the three genotypes was estimated to be 25 Gy at a dose rate 2 Gy/s. For the main experiment, doses of 5 and 15 Gy were selected and variations were observed between genotypes. Clone RUI 317 had the highest rate of adventitious bud regeneration, with 83.6% (2.5 buds/explant) at 5 Gy and 64% (1.8 buds/explant) at 15 Gy, compared to 89% (3.4 buds/explant) with the untreated control. Significant differences in the percentage of bud regeneration of the three genotypes were only observed at 15 Gy in comparison to the control and the number of buds formed per regenerating explant varied between 1 to 4. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Various factors affect the induction of somatic embryogenesis in peach palm (Bactris gasipaes Kunth). Among these, both the type and level of auxins had the greatest influence on in vitro responses, although the genotype and the developmental stage of the explants also influenced results. Younger inflorescences were more competent to respond to SE induction than more mature inflorescences and the use of a pre-treatment with 2,4-D (200 μM) in liquid MS culture medium also increased the embryogenic capacity, and diminished the development of flower buds. Higher oxidation rates were observed in explants maintained on 2,4-D-supplemented culture medium, while on 300 μM or 600 μM Picloram and Dicamba lower oxidation rates were observed. The progression from floral meristem to flower bud occurred at high frequency when low concentrations of auxins were used, independent of the type. Higher concentrations of Picloram or Dicamba reduced or even inhibited flower bud development. Picloram also enhanced the embryogenic induction rate more than 2,4-D and Dicamba, and among the concentrations evaluated 300 μM Picloram enhanced induction for both genotypes, with significant differences between genotypes. The best combination of variables used the least mature inflorescence (Infl1) from genotype I with the 2,4-D pre-treatment and 300 μM Picloram to generate 5 embryogenic calli from 18 explants; 26 embryos were obtained on average from each embryogenic callus. From these, eighteen embryos converted to plantlets and six of these survived transfer to the greenhouse.  相似文献   

17.
The morphogenetic potential of node, internode and leaf explants of Brahmi [Bacopa monniera (L.) Wettst.] was investigated to develop reliable protocols for shoot regeneration and somatic embryogenesis. The explants were excised from shoots raised from axillary buds of nodal explants cultured on Murashige and Skoog (MS) basal medium. Presence of 6-benzylaminopurine (BA) or kinetin influenced the degree of callus formation, from which a large number of shoot buds regenerated. Leaf explants gave the largest number of shoot buds followed by node and internode explants. BA was superior to kinetin; BA at 1.5 – 2.0 mg/l appeared to be optimum for inducing the maximum number of shoot buds. MS + 0.1 mg/l BA + 0.2 mg/l indole-3-acetic acid was the most suitable for shoot elongation. Elongated shoots were rooted on full- or half-strength MS medium with or without 0.5 – 1.0 mg/l indole-3-butyric acid or 0.5 – 1.0 mg/l α-naphthaleneacetic acid. The rooted plants were successfully established in soil. Calli derived from nodal explants cultured on MS medium containing 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), when subcultured on MS medium containing 0.1 or 0.5 mg/l BA or 0.2 mg/l 2,4-D + 0.1 or 0.5 mg/l kinetin, developed somatic embryos. The somatic embryos germinated either on the same media or on MS basal medium, and the resulting plantlets were successfully transplanted to soil. Received: 25 September 1996 / Revision received: 23 October 1997 / Accepted: 12 November 1997  相似文献   

18.
An in vitro selection method was developed for Coleus blumei to enhance salt tolerance of this amenity species. Leaf disc explants were incubated on a Murashige & Skoog medium containing benzylaminopurine, 2 mg l-1, and napthalene acetic acid, 1 mg l-1, which initiated both callus and plantlets from the explants. A large number of explants were incubated on this differentiating medium containing 90 mM NaCl, which inhibited over 90% of plantlet formation. Surviving plantlets. were grown to maturity, when apical cuttings were taken and propagated. Plants were also allowed to flower and set seed. Cuttings from the selected regenerated plants showed consistently better growth in the presence of NaCl than unselected cuttings. Seed progeny of selected plants also showed more vigorous growth in the presence and absence of NaCl than progeny from unselected plants. The in vitro selection was compared with the results of an earlier in vivo selection to assess the contribution from tissue culture derived somaclonal variation. Progeny from the in vitro selection showed a higher level of tolerance than progeny from the in vivo selection.  相似文献   

19.
In Chrysanthemum leaf explants cultivated in vitro the capacity to covalently link polyamines to protein substances exists. This plant enzyme activity shows some similarities with mammalian transglutaminases. In foliar explants cultured on a medium promoting bud or root formation increasing levels of transglutaminase-like activity occurred during the first days of culture when cell multiplication was rapid then the levels declined as the rate of cell division decreased and differentiation occurred. Undifferentiated callus exhibited low transglutaminase-like activity. Transglutaminase-like activity also increased in rapidly proliferating and growing organs (roots and buds initiated from the foliar explants) and decreased during maturity. The relationship among transglutaminases-like activity, cell division, bud and root formation is discussed.Abbreviations TGase transglutaminase - BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - Put putrescine - Spd spermidine  相似文献   

20.
Segments taken from flower-stalk internodes of Oncidium Sweet Sugar formed somatic embryos and shoot buds directly from wound surfaces or via nodular masses proliferation within 1.5 months, when cultured on a Gelrite-gelled 1/2-MS basal medium supplemented with thidiazuron (0.1–3 mg l−1) in darkness. In light, when subcultured, these nodular masses proliferated into green compact callus, and produced somatic embryos, shoot buds and/or yellowish abnormal structures spontaneously. Supplementing 0.1–1 mg l−1 NAA enhanced embryo formation, but retarded proliferation of shoot buds and yellowish abnormal structures. Somatic embryos that directly formed from wound surfaces of flower stalk explants usually developed into abnormal structures, but the callus-derived embryos could germinate into PLBs and eventually developed to normal plantlets on a hormone-free basal medium for 3–4 weeks. Both the embryo-and shoot bud-derived regenerants developed into healthly plantlets when potted in sphagnum moss and acclimatized in the greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号