首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last few years, extensive sea ice melting in the Arctic due to climate change has been detected, which could potentially modify the organic carbon fluxes in these waters. In this study, the effect of sea ice melting on bacterial carbon channelling by phages and protists has been evaluated in the northern Greenland Sea and Arctic Ocean. Grazing on bacteria by protists was evaluated using the FLB disappearance method. Lysis of bacteria due to viral infections was measured using the virus reduction approach. Losses of bacterial production caused by protists (PMMBP) dominated losses caused by viruses (VMMBP) throughout the study. Lysogenic viral production was detected in 7 out of 21 measurements and constituted from 33.9 to 100.0% of the total viral production. Significantly higher PMMBP and lower VMMBP were detected in waters affected by ice melting compared with unaffected waters. Consequently, significantly more bacterial carbon was channelled to the higher trophic levels in affected waters (13.05 ± 5.98 μgC l−1 day−1) than in unaffected waters (8.91 ± 8.33 μgC l−1 day−1). Viruses channelled 2.63 ± 2.45 μgC l−1 day−1 in affected waters and 4.27 ± 5.54 μgC l−1 day−1 in unaffected waters. We conclude that sea ice melting in the Arctic could modify the carbon flow through the microbial food web. This process may be especially important in the case of massive sea ice melting due to climate change.  相似文献   

2.
A new yeast, isolated from natural osmophilic sources, produces d-arabitol as the main metabolic product from glucose. According to 18S rRNA analysis, the NH-9 strain belongs to the genus Kodamaea. The optimal culture conditions for inducing production of d-arabitol were 37 °C, neutral pH, 220 rpm shaking, and 5% inoculum. The yeast produced 81.2 ± 0.67 g L−1 d-arabitol from 200 g L−1 d-glucose in 72 h with a yield of 0.406 g g−1 glucose and volumetric productivity Q\textP Q_{\text{P}} of 1.128 g L−1 h−1. Semi-continuous repeated-batch fermentation was performed in shaker-flasks to enhance the process of d-arabitol production by Kodamaea ohmeri NH-9 from d-glucose. Under repeated-batch culture conditions, the highest volumetric productivity was 1.380 g L−1 h−1.  相似文献   

3.
Gao J  Qu J  Yang W  Wei X  Dai H  Lv D  Ren J  Chen H 《Amino acids》2009,36(3):391-397
A simple and rapid method was devised for determination of tryptophan, based on the Belousov-Zhabotinskii (B-Z) oscillating chemical system. Changes in oscillating period and amplitude were linearly proportional to the negative logarithm of l-tryptophan concentration over the range of 6.44 × 10−7–2.55 × 10−4 M, with the regression coefficients of near unity and a lower detection limit of 6.5 × 10−8 M. d-tryptophan was also examined although it is rarely found in most biological fluids, and perhaps not at all in natural proteins. The change of period against to negative logarithm of d-tryptophan concentration over the range of 4.9 × 10−5–8.24 × 10−4 M is linear. Because the optimum conditions for determination of l- and d-tryptophan are not the same, a little amount of d-tryptophan does not affect the determination of l-tryptophan. Various influences were studied and a possible mechanism of perturbation to the B-Z oscillator by tryptophan was also discussed. Spectrophotometry and fluorescence spectrophotofluorimetry were used for comparision and confirmation of the results.  相似文献   

4.
R. Gradinger 《Polar Biology》1999,22(3):169-177
The abundance and biomass of sympagic meiofauna were studied during three cruises to the Antarctic and one summer expedition to the central Arctic Ocean. Ice samples were collected by ice coring and algal pigment concentrations and meiofauna abundances were determined for entire cores. Median meiofauna abundances for the expeditions ranged from 4.4 to 139.5 × 103 organisms m−2 in Antarctic sea ice and accounted for 40.6 × 103 organisms m−2 in Arctic multi-year sea ice. While most taxa (ciliates, foraminifers, turbellarians, crustaceans) were common in both Arctic and Antarctic sea ice, nematodes and rotifers occurred only in the Arctic. Based on the calculated biomass, the potential meiofauna ingestion rates were determined by applying an allometric model. For both hemispheres, daily and yearly potential ingestion rates were below the production values of the ice algal communities, pointing towards non-limited feeding conditions for ice meiofauna year-round. Accepted: 29 March 1999  相似文献   

5.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

6.
Abstract Seasonal variation in bacterioplankton abundance, biomass, and bacterioplankton production was studied over eight years in hypertrophic Lake S?byg?rd. Biologically, the lake is highly variable; this is due mainly to large interannual variation in fish recruitment. Bacterioplankton production was low during winter, typically 1–3 × 107 cells l−1 h−1, and high during summer, albeit greatly fluctuating with maximum rates typically ranging from 60 to 90 × 107 cells l−1 h−1 (or 0.4 to 0.6 mg C l−1 day−1). Less pronounced variations were found in bacterioplankton abundance, which typically ranged from 3–8 × 109 cells l−1 in winter to 15–30 × 109 cells l−1 during summer. The specific growth rate of bacterioplankton varied from 0.02–0.2 d−1 in winter to 0.5–2.3 day−1 during summer. Interpolated mean bacterioplankton production, in terms of carbon, ranged from 0.08 to 0.16 mg C l−1 day−1, corresponding to 1.6–5.5% of the phytoplankton production, while biomass ranged from 0.28 to 0.36 mg C l−1, corresponding to 1.9–4.6% of the phytoplankton biomass. We conducted regression analysis, relating the bacterioplankton variables to a number of environmental variables, and evaluated the interannual parameter variability. Chlorophyll a and phytoplankton production contributed less to the variation in the bacterioplankton variables than in most previous analyses using data from less eutrophic systems. We suggest that the proportion of phytoplankton production that is channelized through bacterioplankton in lakes decreases with increasing trophic state and decreasing mean depth. This probably reflects a concurrent increase in fish predation on macrozooplankton and loss by sedimentation. An important part of the residual variation in the equations hitherto proposed in the literature could be explained by variation in macrozooplankton biomass and pH > 10.2. A negative effect of high pH on bacterioplankton production was confirmed by laboratory experiments. The impact of different zooplankton varies considerably, with Daphnia seeming to have a negative impact on bacterioplankton abundance and, thereby, indirectly on bacterioplankton production, while Bosmina, rotifers, and cyclopoid copepods seem to stimulate both abundance and production. Bosmina apparently also stimulate the bacterioplankton specific growth rate. Received: 8 February 1996; Accepted: 16 July 1996  相似文献   

7.
Yeasts that ferment both hexose and pentose are important for cost-effective ethanol production. We found that the soil yeast strain NY7122 isolated from a blueberry field in Tsukuba (East Japan) could ferment both hexose and pentose (d-xylose and l-arabinose). NY7122 was closely related to Candida subhashii on the basis of the results of molecular identification using the sequence in the D1/D2 domains of 26S rDNA and 5.8S-internal transcribed spacer region. NY7122 produced at least 7.40 and 3.86 g l−1 ethanol from 20 g l−1 d-xylose and l-arabinose within 24 h. NY7122 could produce ethanol from pentose and hexose sugars at 37°C. The highest ethanol productivity of NY7122 was achieved under a low pH condition (pH 3.5). Fermentation of mixed sugars (50 g l−1 glucose, 20 g l−1 d-xylose, and 10 g l−1 l-arabinose) resulted in a maximum ethanol concentration of 27.3 g l−1 for the NY7122 strain versus 25.1 g l−1 for Scheffersomyces stipitis. This is the first study to report that Candida sp. NY7122 from a soil environment could produce ethanol from both d-xylose and l-arabinose.  相似文献   

8.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Currently, the impact of declining seasonal sea ice extent in the Arctic on polar food webs remains uncertain. Previously, a range of proxy techniques has been employed to determine links between sea ice or phytoplankton primary production and the Arctic marine food web, although it is accepted that such approaches have their limitations. Here, we propose a novel approach to tracing sea ice primary production through Arctic food webs using the sea ice diatom biomarker, IP25. Various benthic macrofaunal specimens were collected between March and May 2008 from Franklin Bay in the Amundsen Gulf, Arctic Canada, as part of the International Polar Year–Circumpolar Flaw Lead system study. Each specimen was analysed for the presence of the sea ice diatom biomarker IP25 in order to provide evidence for feeding by benthic organisms on sea ice algae. IP25 was found in nineteen out of the twenty-one specimens analysed, often as the most abundant of the highly branched isoprenoid biomarkers detected. The stable isotope composition of IP2513C = −17.1 ± 0.5‰) in the sea urchin (Strongylocentrotus sp.) specimens was similar to that reported previously for this biomarker in Arctic sea ice, sedimenting particles and sediments. It is concluded that detection of IP25 in Arctic benthic macrofauna represents a novel approach to providing convincing evidence for feeding on sea ice algae. It is also proposed that analysis of IP25 may be used to trace trophic transfer of sea ice algal-derived organic matter through Arctic food webs in the future.  相似文献   

10.
d-Arabitol production from lactose by Kluyveromyces lactis NBRC 1903 has been studied by following the time courses of concentrations of cell mass, lactose, d-arabitol, ethanol, and glycerol at different temperatures. It was found that temperature is a key factor in d-arabitol production. Within temperatures ranging from 25 to 39°C, the highest d-arabitol concentration of 99.2 mmol l−1 was obtained from 555 mmol l−1 of lactose after 120 h of batch cultivation at 37°C. The yield of d-arabitol production on cell mass growth increased drastically at temperatures higher than 35°C, and the yield reached 1.07 at 39°C. Increasing the cell mass concentration two-fold after 24 h of culture growth at 37°C, the d-arabitol concentration further increased to 168 mmol l−1. According to the distribution of the metabolic products, metabolic changes related to growth phase were also discussed. The stationary-phase K. lactis cells in the batch culture that is started with exposing the precultured inoculum to high osmotic stress, high oxidative stress, and high heat stress are found to be preferable for d-arabitol production.  相似文献   

11.
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic–pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind. m−3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5–2.3 mg Chl-a m−3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind. m−2) and wet biomass (<0.2 g m−2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.  相似文献   

12.
In a study screening anaerobic microbes utilizing d-galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H2, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with d-galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294T, with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L−1 of H2, 0.36 ± 0.01 g L−1 of acetic acid, 0.44 ± 0.01 g L−1 of butyric acid, and 0.98 ± 0.03 g L−1 of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L−1 with the addition of 1.5 g L−1 of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L−1 of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L−1. Without adding sodium acetate, 2.75 g L−1 of hexanoic acid production from d-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from d-galactitol and d-glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na2S·9H2O.  相似文献   

13.
Helicobacter pylori is a microaerophilic bacterium, associated with gastric inflammation and peptic ulcers. d-Amino acid dehydrogenase is a flavoenzyme that digests free neutral d-amino acids yielding corresponding 2-oxo acids and hydrogen. We sequenced the H. pylori NCTC 11637 d-amino acid dehydrogenase gene, dadA. The primary structure deduced from the gene showed low similarity with other bacterial d-amino acid dehydrogenases. We purified the enzyme to homogeneity from recombinant Escherichia coli cells by cloning dadA. The recombinant protein, DadA, with 44 kDa molecular mass, possessed FAD as cofactor, and showed the highest activity to d-proline. The enzyme mediated electron transport from d-proline to coenzyme Q1, thus distinguishing it from d-amino acid oxidase. The apparent K m and V max values were 40.2 mM and 25.0 μmol min−1 mg−1, respectively, for dehydrogenation of d-proline, and were 8.2 μM and 12.3 μmol min−1 mg−1, respectively, for reduction of Q1. The respective pH and temperature optima were 8.0 and 37°C. Enzyme activity was inhibited markedly by benzoate, and moderately by SH reagents. DadA showed more similarity with mammalian d-amino acid oxidase than other bacterial d-amino acid dehydrogenases in some enzymatic characteristics. Electron transport from d-proline to a c-type cytochrome was suggested spectrophotometrically.  相似文献   

14.
A recombinant putative β-galactosidase from Thermoplasma acidophilum was purified as a single 57 kDa band of 82 U mg−1. The molecular mass of the native enzyme was 114 kDa as a dimer. Maximum activity was observed at pH 6.0 and 90°C. The enzyme was unstable below pH 6.0: at pH 6 its half-life at 75°C was 28 days but at pH 4.5 was only 13 h. Catalytic efficiencies decreased as p-nitrophenyl(pNP)-β-d-fucopyranoside (1067) > pNP-β-d-glucopyranoside (381) > pNP-β-d-galactopyranoside (18) > pNP-β-d-mannopyranoside (11 s−1 mM−1), indicating that the enzyme was a β-glycosidase.  相似文献   

15.
An enantio-selective d-Phe imprinted P(AA-co-AN) membrane was prepared using the wet-phase inversion method. The membrane not only selectively adsorbed phenylalanine but also rejected it with a rejection selectivity of 0.82–0.64 and 0.91–0.63 during the filtration of 100 and 10 ppm (g m−3) racemate solutions, respectively. The fluxes of d-Phe and l-Phe during filtration of 10 ppm racemate solution were 0.0077–0.0229 and 0.0064–0.0208 mg m−2 s−1, respectively, and the fluxes of d-Phe and l-Phe during filtration of 100 ppm racemate solution were 0.1287–0.2522 and 0.1174–0.2458 mg m−2 s−1, respectively. The adsorption selectivity was higher at low concentration. The adsorption selectivities varied from 1.11 to 1.65 and from 1.64 to 2.78 during filtration of 100 and 10 ppm racemate solutions, respectively. In respect to desorption, the fractional difference between d-Phe and l-Phe in the recovered solution from 10 ppm was higher than that from 100 ppm.  相似文献   

16.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

17.
A recombinant d-lyxose isomerase from Providencia stuartii was immobilized on Duolite A568 beads which gave the highest conversion of d-fructose to d-mannose among the various immobilization beads evaluated. Maximum activities of both the free and immobilized enzymes for fructose isomerization were at pH 7.5 and 45°C in the presence of 1 mM Mn2+. Enzyme half-lives were 14 and 30 h at 35°C and 3.4 and 5.1 h at 45°C, respectively. The immobilized enzyme in 300 g fructose/l (replaced hourly), produced 75 g mannose/l at 35°C = 25% (w/w) yield with a productivity of 75 g mannose l−1 h−1 after 23 cycles.  相似文献   

18.
Denitrification activity and oxygen dynamics in Arctic sea ice   总被引:1,自引:0,他引:1  
Denitrification and oxygen dynamics were investigated in the sea ice of Franklin Bay (70°N), Canada. These investigations were complemented with measurements of denitrification rates in sea ice from different parts of the Arctic (69°N–85°N). Potential for bacterial denitrification activity (5–194 μmol N m−2 day−1) and anammox activity (3–5 μmol N m−2 day−1) in melt water from both first-year and multi-year sea ice was found. These values correspond to 27 and 7%, respectively, of the benthic denitrification and anammox activities in Arctic sediments. Although we report only potential denitrification and anammox rates, we present several indications that active denitrification in sea ice may occur in Franklin Bay (and elsewhere): (1) despite sea ice-algal primary production in the lower sea ice layers, heterotrophic activity resulted in net oxygen consumption in the sea ice of 1–3 μmol l−1 sea ice per day at in situ light conditions, suggesting that O2 depletion may occur prior to the spring bloom. (2) The ample organic carbon (DOC) and NO3 present in sea ice may support an active denitrification population. (3) Measurements of O2 conditions in melted sea ice cores showed very low bulk concentrations, and in some cases anoxic conditions prevailed. (4) Laboratory studies using planar optodes for measuring the high-resolution two-dimensional O2 distributions in sea ice confirmed the very dynamic and heterogeneous O2 distribution in sea ice, displaying a mosaic of microsites of high and low O2 concentrations. Brine enclosures and channels were strongly O2 depleted in actively melting sea ice, and anoxic conditions in parts of the brine system would favour anaerobic processes.  相似文献   

19.
Killer whales (Orcinus orca) occur in the eastern Canadian Arctic during the open-water season, but their seasonal movements in Arctic waters and overall distribution are poorly understood. During August 2009, satellite transmitters were deployed onto two killer whales in Admiralty Inlet, Baffin Island, Canada. A whale tracked for 90 days remained in Admiralty and Prince Regent Inlets from mid-August until early October, when locations overlapped aggregations of marine mammal prey species. While in Admiralty and Prince Regent Inlets, the whale traveled 96.1 ± 45.3 km day−1 (max 162.6 km day−1) and 120.1 ± 44.5 km day−1 (max 192.7 km day−1), respectively. Increasing ice cover in Prince Regent Inlet in late September and early October was avoided, and the whale left the region prior to heavy ice formation. The whale traveled an average of 159.4 ± 44.8 km day−1 (max 252.0 km day−1) along the east coast of Baffin Island and into the open North Atlantic by mid-November, covering over 5,400 km in approximately one month. This research marks the first time satellite telemetry has been used to study killer whale movements in the eastern Canadian Arctic and documents long-distance movement rarely observed in this species.  相似文献   

20.
In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号