首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
BACKGROUND: Amebiasis is a parasitic infection with Entamoeba histolytica. Pulmonary amebiasis is rare since the infection is commonly manifested as amebic colitis or liver abscess. Most pleuropulmonary amebiasis is seen in patients with amebic liver abscesses. A pulmonary amebic lesion without either a liver abscess or amebic colitis is extremely rare. Thus, reported cases of sputum cytologic diagnosis of a pulmonary amebic lesion from a patient without a liver abscess are also very rare. CASE: A 53-year-old man presented with a dry cough and mild fever. Chest radiography revealed an abnormal solitary mass lesion in the right upper lung field. The clinical diagnosis was a bacterial lung abscess. Sputum cytologic examination demonstrated many trophozoites of E. histolytica. Following sputum cytodiagnosis, serologic tests revealed a slightly high but almost normal titer of IgG antibodies to E. histolytica, indicating the possible presence of the pathogen. Polymerase chain reaction (PCR) using E. histolytica-specific primers for DNA extracted from the sputum sample revealed specific DNA product. CONCLUSION: Pulmonary amebiasis without either a liver abscess or amebic colitis must be distinguished from bacterial abscesses and neoplastic disease. A sputum cytologic examination combined with PCR for DNA extracted from a sputum sample is a good approach to the diagnosis of a pulmonary amebic abscess.  相似文献   

2.
3.
The parasite Entamoeba histolytica colonizes the human intestine causing amoebic colitis and disseminates through the vascular route to form liver abscesses. The Gal/GalNAc lectin is an adhesion protein complex which sustains tissue invasion by E. histolytica. Disruption of the Gal/GalNAc lectin function in engineered parasites (HGL-2 trophozoites) changed the pathophysiology of hamster liver abscess formation. HGL-2 trophozoites produced numerous small inflammatory foci located in the vicinity of blood vessels. The low penetration of HGL-2 trophozoites into hepatic tissue was shown to be associated with weak attraction of neutrophils and macrophages to the infiltrated areas and absence of pro-inflammatory tumour necrosis factor, in contrast to wild type or control vector infections. The low host inflammatory response in HGL-2 infections correlated with a delay in apoptosis of hepatic cells, whereas apoptosis of endothelial cells was not detected. Triggering of apoptosis in both host cell types most likely has a central role in modulating inflammation, a major landmark in hepatic amoebiasis. These data highlight the key role of the Gal/GalNAc lectin in initiation of E. histolytica hepatic infection.  相似文献   

4.
Entamoeba histolytica infection may have various clinical manifestations. Nine out of ten E. histolytica infections remain asymptomatic, while the remainder become invasive and cause disease. The most common form of invasive infection is amebic diarrhea and colitis, whereas the most common extra-intestinal disease is amebic liver abscess. The underlying reasons for the different outcomes are unclear, but a recent study has shown that the parasite genotype is a contributor. To investigate this link further we have examined the genotypes of E. histolytica in stool- and liver abscess-derived samples from the same patients. Analysis of all 18 paired samples (16 from Bangladesh, one from the United States of America, and one from Italy) revealed that the intestinal and liver abscess amebae are genetically distinct. The results suggest either that E. histolytica subpopulations in the same infection show varying organ tropism, or that a DNA reorganization event takes place prior to or during metastasis from intestine to liver.  相似文献   

5.
6.
The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition of crucial elements of the host response to infection have led to significant insights into the pathogenesis of amebic infection. E. histolytica virulence factors include 1) a surface galactose binding lectin that mediates E. histolytica binding to host cells and may contribute to amebic resistance to complement, 2) amebapores, small peptides capable of lysing cells, which may play a role in killing intestinal epithelial cells, hepatocytes, and host defense cells, and 3) a family of secreted cysteine proteinases that play a key role in E. histolytica tissue invasion, evasion of host defenses, and parasite induction of gut inflammation. Amebae can both lyse host cells and induce their suicide through programmed cell death. The host response is also an important factor in the outcome of infection, and neutrophils may play a key role in contributing to the tissue damage seen in amebiasis and in controlling amebic infection.  相似文献   

7.
Entamoeba histolytica is a protozoan intestinal parasite that causes amoebic colitis and amoebic liver abscess. To identify virulence factors of E. histolytica, we first defined the phenotypes of two E. histolytica strains, HM-1:IMSS, the prototype virulent strain, and E. histolytica Rahman, a strain that was reportedly less virulent than HM-1:IMSS. We found that compared with HM-1:IMSS, Rahman has a defect in erythrophagocytosis and the ability to cause amoebic colitis in human colonic xenografts. We used differential in-gel 2D electrophoresis to compare the proteome of Rahman and HM-1:IMSS, and identified six proteins that were differentially expressed above a fivefold level between the two organisms. These included two proteins with antioxidative properties (peroxiredoxin and superoxide dismutase), and three proteins of unknown function, grainin 1, grainin 2 and a protein containing a LIM-domain. Overexpression of peroxiredoxin in Rahman rendered the transgenic trophozoites more resistant to killing by H2O2 in vitro, and infection with Rahman trophozoites expressing higher levels of peroxiredoxin was associated with higher levels of intestinal inflammation in human colonic xenografts, and more severe disease based on histology. In contrast, higher levels of grainin appear to be associated with a reduced virulence phenotype, and E. histolytica HM-1:IMSS trophozoites infecting human intestinal xenografts show marked decreases in grainin expression. Our data indicate that there are definable molecular differences between Rahman and HM-1:IMSS that may explain the phenotypic differences, and identify peroxiredoxin as an important component of virulence in amoebic colitis.  相似文献   

8.
9.
Invasive infection with Entamoeba histolytica causes intestinal and hepatic amoebiasis. In liver, parasites cross the endothelial barrier before abscess formation in the parenchyma. We focussed on amoebae interactions with human hepatic endothelial cells, the latter potentially playing a dual role in the infection process: as a barrier and as modulators of host defence responses. We characterized early responses of a human liver sinusoidal endothelial cell line to virulent and virulence-attenuated E. histolytica. Within the first minutes human cells start to retract, enter into apoptosis and die. In the presence of virulent amoebae, expression of genes related to cell cycle, cell death and integrin-mediated adhesion signalling was modulated, and actin fibre, focal adhesion kinase and paxillin localizations changed. Effects of inhibitors and amoeba strains not expressing pathogenic factors amoebapore A and cysteine protease A5 indicated that cell death and cytoskeleton disorganization depend upon parasite adhesion and amoebic cysteine proteinase activities. The data establish a relation between cytotoxic effects of E. histolytica and altered human target cell adhesion and suggest that interference with adhesion signalling triggers endothelial cell retraction and death. Understanding the roles of integrin signalling in endothelial cells will provide clues to unravel host-pathogen interactions during amoebic liver infection.  相似文献   

10.
Entamoeba histolytica is the cause of amebic colitis and liver abscess. This parasite induces apoptosis in host cells and utilizes exposed ligands such as phosphatidylserine to ingest the apoptotic corpses and invade deeper into host tissue. The purpose of this work was to identify amebic proteins involved in the recognition and ingestion of dead cells. A member of the transmembrane kinase family, phagosome-associated TMK96 (PATMK), was identified in a proteomic screen for early phagosomal proteins. Anti-peptide affinity-purified antibody produced against PATMK demonstrated that it was a type I integral membrane protein that was expressed on the trophozoite surface, and that co-localized with human erythrocytes at the site of contact. The role of PATMK in erythrophagocytosis in vitro was demonstrated by: (i) incubation of ameba with anti-PATMK antibodies; (ii) PATMK mRNA knock-down using a novel shRNA expression system; and (iii) expression of a carboxy-truncation of PATMK (PATMK(delta932)). Expression of the carboxy-truncation of PATMK(delta932) also caused a specific reduction in the ability of E. histolytica to establish infection in the intestinal model of amebiasis, however these amebae retained the ability to cause hepatic abscesses when directly injected in the liver. In conclusion, PATMK was identified as a member of the TMK family that participates in erythrophagocytosis and is uniquely required for intestinal infection.  相似文献   

11.
12.
The Gal/GalNAc lectin of Entamoeba histolytica trophozoites plays an important role in adhesion. The distribution and final destiny of the lectin during the interaction with host cells are poorly understood. Using monoclonal and polyclonal antibodies against the lectin we studied by immunocytochemistry the in vitro and in vivo interaction of E. histolytica trophozoites with human and hamster hepatocytes. We also analyzed the presence and distribution of the lectin in a mouse model of intestinal amoebiasis. In all cases, trophozoites were highly labeled by anti-lectin antibodies. Cultured human and hamster hepatocytes in contact with, or localized at the vicinity of parasites were also labeled by anti-lectin antibodies. Most of the labeled hepatocytes showed variable degrees of cell damage. Hepatocytes distantly localized from the parasites were also stained with the anti-lectin antibodies. Immunolabeling of tissue sections from different stages of the development of experimental amoebic liver abscess in hamsters showed inflammatory foci containing lectin-labeled trophozoites, hepatocytes, and sinusoidal and inflammatory cells. Lectin-containing hepatocytes had vacuolated cytoplasm with some nuclei with a condensed appearance. Damaged intestinal epithelium also was labeled with anti-lectin antibodies in a mouse model of intestinal amoebiasis. Electron microscopy of axenically cultured trophozoites using gold-labeled monoclonal and polyclonal anti-lectin antibody showed that plasma membrane, vacuole membranes and areas of cell cytosol were labeled. Higher deposits of gold particles in plasma membrane suggestive of cell secretion were observed. Our results demonstrated that Gal/GalNAc lectin was bound and captured by different target cells, and that host cells containing the lectin showed signs of cell damage. The contribution of lectin transfer to host cells in adherence and cell injury remains to be determined.  相似文献   

13.
Invasive microorganisms efface enteric microvilli to establish intimate contact with the apical surface of enterocytes. To understand the molecular basis of this effacement in amebic colitis, we seeded Entamoeba histolytica trophozoites on top of differentiated human Caco-2 cell layers. Western blots of detergent lysates from such cocultures showed proteolysis of the actin-bundling protein villin within 1 min of direct contact of living trophozoites with enterocytes. Mixtures of separately prepared lysates excluded detergent colysis as the cause of villin proteolysis. Caspases were not responsible as evidenced by the lack of degradation of specific substrates and the failure of a specific caspase inhibitor to prevent villin proteolysis. A crucial role for amebic cysteine proteinases was shown by prevention of villin proteolysis and associated microvillar alterations through the treatment of trophozoites before coculture with synthetic inhibitors that completely blocked amebic cysteine proteinase activity on zymograms. Moreover, trophozoites of amebic strains pSA8 and SAW760 with strongly reduced cysteine proteinase activity showed a reduced proteolysis of villin in coculture with enteric cells. Salmonella typhimurium and enteropathogenic Escherichia coli disturb microvilli without villin proteolysis, indicating that the latter is not a consequence of the disturbance of microvilli. In conclusion, villin proteolysis is an early event in the molecular cross-talk between enterocytes and amebic trophozoites, causing a disturbance of microvilli.  相似文献   

14.
In experimental acute amebic liver abscess, produced in hamsters by the intraportal inoculation of 1 x 10(6) axenic trophozoites of Entamoeba histolytica strain HM-1, we examined the blood perfusion of the lesions 5, 10, 24 and 72 h after injection of the parasites. India ink introduced into the portal circulation filled all liver vessels but was systematically excluded from even the earlier amebic lesions. The absence of serum proteinase inhibitors from the lesions may allow the participation of amebic proteinases in the causation of tissue necrosis.  相似文献   

15.
During tissue invasion, Entamoeba histolytica trophozoites interact with endothelial cells and extracellular matrix (ECM) proteins such as fibronectin (FN), collagen, and laminin. It has been demonstrated that trophozoites interact with FN through a beta1 integrin-like FN receptor (beta 1EhFNR), activating tyrosine kinases. In order to characterize the signaling process triggered by the amoebic receptor, activation, and association of tyrosine kinases and structural proteins were determined. As a result of FN binding by the beta 1EhFNR, the receptor itself, FAK, and paxillin were phosphorylated in tyrosine. Co-immunoprecipitation experiments showed that a multimolecular signaling complex was formed by the amoebic FN receptor, FAK, paxillin, and vinculin. These results strongly suggest that a signaling pathway, similar to the one used in mammalian cells, is activated when E. histolytica trophozoites adhere to FN.  相似文献   

16.
Entamoeba histolytica kills mammalian target cells in a multi-step sequential process with separate adherence, cytolytic, and phagocytic events. In the studies reported here, we used fluorescein isothiocyanate linked to dextran to label the endocytic vesicles of the HM1 strain of E. histolytica and measure vesicle pH (5.1 +/- 0.2 by spectrofluorimetry). Concentrations of NH4Cl (1.0-10.0 mM) sufficient to increase vesicle pH to greater than or equal to 5.7 inhibited amebic killing of target Chinese hamster ovary (CHO) cells as assayed by trypan blue staining, by the release of 3H-thymidine previously incorporated into CHO cell monolayers, and by the release of 111indium oxine from radiolabeled CHO cells. Similar effects were also observed with two other weak bases, primaquine and chloroquine (both 50 microM). In contrast, NH4Cl (10 mM) did not affect either the adherence or phagocytic events, as measured by amebic adherence to CHO cells at 4 degrees C and by the binding and ingestion of 3H-leucine-labeled bacteria. In the presence of NH4Cl and the carbohydrate ligand asialofetuin, there was no evidence of intracellular trapping of the amebic galactose-inhibitable lectin; inhibition of adherence by cycloheximide (10 micrograms/ml for 3 h) suggested rapid turnover of the surface lectin. Prolonged exposure to NH4Cl for 48 h (which had no effect on amebic protein synthesis) or shorter exposure to cycloheximide (10 micrograms for 3 h) produced persistent inhibition of cytolysis. These results indicate that an uninterrupted acid pH in intracellular endocytic vesicles is necessary for the cytolysis of target cells by E. histolytica trophozoites.  相似文献   

17.
It is generally accepted that a majority of individuals infected by Entamoeba histolytica do not develop symptomatic disease. However, the parasite and the host factors contributing to the development of the disease, remain undetermined. It is also unclear why certain individuals develop extra-intestinal amebiasis without exhibiting apparent intestinal symptoms. An outbreak of amebic liver abscess in Tbilisi, Georgia in 1998-1999 suggested that the causative E. histolytica strain had an unusual propensity for extra-intestinal spread. To correlate the genetic differences with pathogenic potential of the parasite, we have examined the SREHP gene polymorphisms among Georgian E. histolytica isolates. Comparison of polymorphic patterns revealed the presence of several different genotypes of E. histolytica, thus preventing an association of a single genotype with hepatic disease, but supporting the previous finding of extensive genetic diversity among E. histolytica isolates from the same geographic origin.  相似文献   

18.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

19.
Interactions of pathogenic Entamoeba histolytica (HM 1) with human intestinal epithelial cells (Henle-407) were investigated. The E. histolytica trophozoites adhered and cytolysed 87% of cultured epithelial cell monolayers. A significant (P less than 0.001) inhibition of cytopathic effect of amoebic trophozoites pretreated with monoclonal antibodies to a 29 kDa surface associated protein suggested utilization of the 29 kDa surface protein in recognition and cytolysis of epithelial target cells. The polyclonal sera from treated patients of amoebic liver abscess and anti-amoebic hyperimmune serum inhibited cytopathogenicity to a greater degree (P less than 0.001) than did the monoclonal antibodies. The data thus suggest involvement of several amoebic molecules in exercising cytopathogenicity to epithelial cells.  相似文献   

20.
The galactose and N-acetyl-D-galactosamine-inhibitable adherence lectin of Entamoeba histolytica is a cell surface protein which mediates parasite adherence to human colonic mucus, colonic epithelial cells, and other target cells. The amebic lectin was purified in 100-micrograms quantities from detergent-solubilized trophozoites by monoclonal antibody affinity chromatography. The adherence lectin was purified 500-fold as judged by radioimmunoassay. The nonreduced lectin had a molecular mass of 260 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of pH 6.2. The amebic lectin reduced with beta-mercaptoethanol consisted of 170- and 35-kDa subunits. Both subunits could be labeled on the cell surface with 125I, and both were metabolically labeled with [3H]glucosamine. The amino termini of the subunits had unique amino acid sequences, and polyclonal antisera to the heavy subunit did not cross-react with the light subunit. The yield of phenylthiohydantoin derivatives from the second and third positions in the sequence of the heavy and light subunits gave a molar ratio of one 170- to one 35-kDa subunit. Antibodies directed to the heavy subunit inhibited amebic adherence to Chinese hamster ovary cells by 100%, suggesting that the heavy subunit is predominantly responsible for mediating amebic adherence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号