首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The pathogenicity of Erwinia herbicola pv. gypsophilae (Ehg) and Erwinia herbicola pv. betae (Ehb) is dependent on a native plasmid (pPATH(Ehg) or pPATH(Ehb)) that harbors the hrp gene cluster, genes encoding type III effectors, phytohormones, biosynthetic genes, and several copies of IS1327. Sequence analysis of the hrp-flanking region in pPATH(Ehg) (cosmid pLA150) revealed a cluster of four additional IS elements designated as ISEhel, ISEhe2, ISEhe3, and ISEhe4. Two copies of another IS element (ISEhe5) were identified on the upstream region of the indole-3-acetic acid operon located on the same cosmid. Based on homology of amino acids and genetic organization, ISEhe1 belongs to the IS630 family, ISEhe2 to the IS5 family, ISEhe3 and ISEhe4 to different groups of the IS3 family, and ISEhe5 to the IS1 family. With the exception of ISEhe4, one to three copies of all the other IS elements were identified only in pathogenic strains of Erwinia herbicola pv. gypsophilae and Erwinia herbicola pv. betae whereas ISEhe4 was present in both pathogenic and nonpathogenic strains. An open reading frame that exhibited high identity (89% in amino acids) to AvrPphD of Pseudomonas syringae pv. phaseolicola was present within the cluster of IS elements. An insertional mutation in the AvrPphDEh, reduced gall size in gypsophila by approximately 85%. In addition, remnants of known genes from four different bacteria were detected on the same cosmid.  相似文献   

9.
10.
11.
The host range of the gall-forming bacterium Erwinia herbicola pv. gypsophilae (Ehg) is restricted to gypsophila whereas Erwinia herbicola pv. betae (Ehb) attacks beet as well as gypsophila. Both pathovars contain an indigenous plasmid (pPATH(Ehg or pPATH(Ehb)) that harbors pathogenicity genes, including the hrp gene cluster. A cosmid library of Ehg824-1 plasmid DNA was mobilized into Ehb4188 and the transconjugants were screened for pathogenicity on beet. One Ehb transconjugant harboring the cosmid pLA173 of pPATHEb induced a hypersensitive-like response and abolished pathogenicity on beet. Transposon mutagenesis of an open reading frame (ORF) located on this cosmid eliminated its affect on pathogenicity. Marker exchange of this mutation into Ehg824-1 caused a substantial reduction in gall size on gypsophila and caused Ehg824-1 to extend its host range and incite galls on beet. The ORF (1.5 kb) was designated as pthG (pathogenicity gene on gypsophila). DNA sequence analysis of pthG revealed no significant homology to known genes in the data bank. Only remnants of the pthG sequences were identified on the pPATH of Ehb4188. The deduced protein lacked an N-terminal signal peptide but contained a short trans-membrane helix in its C terminus. The gene product, as determined by expression in Escherichia coli and Western blots (immunoblots), was a 56-kDa protein.  相似文献   

12.
13.
14.
The RP4::mini-Mu plasmid pULB113, transferred from Escherichia coli strain MXR, was stable and transfer proficient in Erwinia amylovora strain EA303, E. carotovora subsp. atroseptica strain ECA12, E. carotovora subsp. carotovora strain ECC193, and E. chrysanthemi strain EC183. The plasmid mobilized an array of Erwinia sp. chromosomal markers (E. amylovora: his+,ilv+,rbs+,ser+,thr+;E. chrysanthemi:arg+,his+,ilv+,leu+; E. carotovora subsp. atroseptica: arg+,gua+,leu+,lys+,pur+,trp+; E. carotovora subsp. carotovora: arg+,gua+,leu+,lys+,out+[export of enzymes],pur+,trp+), suggesting random interactions of the plasmid with the chromosomes. In E. carotovora subsp. carotovora, pULB113-mediated two-factor crosses revealed linkage between three auxotrophic markers and the out loci. The export of pectate lyase, polygalacturonase, and cellulase and the maceration of potato tuber tissue occurred with Out+, but not Out-, strains of E. carotovora subsp. carotovora, indicating the importance of enzyme export in plant tissue maceration. Erwinia sp. donors harboring pULB113 complemented mutations in various biosynthetic and catabolic genes (arg, gal, his, leu, met, pro, pur, thy) in Escherichia coli recA strains. Escherichia coli transconjugants harbored pULB113 primes as indicated by the cotransfer of Erwinia genes and pULB113 markers and a change in plasmid mass. Moreover, the PstI and SmaI cleavage patterns of selected pULB113 primes were different from those of pULB113. pULB113 primes carried DNA insertions ranging from 3 to about 160 kilobases. These findings indicate that pULB113 is useful for in vivo gene cloning and genetic analysis of various enterobacterial phytopathogens.  相似文献   

15.
16.
The RP4::mini-Mu plasmid pULB113, transferred from Escherichia coli strain MXR, was stable and transfer proficient in Erwinia amylovora strain EA303, E. carotovora subsp. atroseptica strain ECA12, E. carotovora subsp. carotovora strain ECC193, and E. chrysanthemi strain EC183. The plasmid mobilized an array of Erwinia sp. chromosomal markers (E. amylovora: his+,ilv+,rbs+,ser+,thr+;E. chrysanthemi:arg+,his+,ilv+,leu+; E. carotovora subsp. atroseptica: arg+,gua+,leu+,lys+,pur+,trp+; E. carotovora subsp. carotovora: arg+,gua+,leu+,lys+,out+[export of enzymes],pur+,trp+), suggesting random interactions of the plasmid with the chromosomes. In E. carotovora subsp. carotovora, pULB113-mediated two-factor crosses revealed linkage between three auxotrophic markers and the out loci. The export of pectate lyase, polygalacturonase, and cellulase and the maceration of potato tuber tissue occurred with Out+, but not Out-, strains of E. carotovora subsp. carotovora, indicating the importance of enzyme export in plant tissue maceration. Erwinia sp. donors harboring pULB113 complemented mutations in various biosynthetic and catabolic genes (arg, gal, his, leu, met, pro, pur, thy) in Escherichia coli recA strains. Escherichia coli transconjugants harbored pULB113 primes as indicated by the cotransfer of Erwinia genes and pULB113 markers and a change in plasmid mass. Moreover, the PstI and SmaI cleavage patterns of selected pULB113 primes were different from those of pULB113. pULB113 primes carried DNA insertions ranging from 3 to about 160 kilobases. These findings indicate that pULB113 is useful for in vivo gene cloning and genetic analysis of various enterobacterial phytopathogens.  相似文献   

17.
18.
The episomic element F'lac(+) was transferred, probably by conjugation, from Escherichia coli to Lac(-) strains of Erwinia herbicola, Erwinia amylovora, and Erwinia chrysanthemi (but not to several other Erwinia spp. In preliminary trials). The lac genes in the exconjugants of the Erwinia spp. showed varying degrees of stability depending on the strain (stable in E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but markedly unstable in E. chrysanthemi strain EC16). The lac genes and the sex factor (F) were eliminated from the exconjugants by treatment with acridine orange, thus suggesting that both lac and F are not integrated in the Erwinia exconjugants. All of the tested Lac(+) exconjugants of E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but not of E. chrysanthemi strain EC 16, were sensitive to the F-specific phage M13. The heterogenotes (which harbored F'lac(+)) of E. herbicola strains Y46 and Y74, E. amylovora strain EA178, and E. chrysanthemi strain EC16 were able to transfer lac genes by conjugation to strains of E. herbicola, E. amylovora, E. chrysanthemi, Escherichia coli, and Shigella dysenteriae. The frequency of such transfer from Lac(+) exconjugants of Erwinia spp. was comparable to that achieved by using E. coli F'lac(+) as donors, thus indicating the stability, expression, and restriction-and-modification properties of the sex factor (F) in Erwinia spp.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号