首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物RACK1蛋白研究进展   总被引:2,自引:0,他引:2  
RACK1(蛋白激酶C受体)是一种色氨酸-天门冬氨酸域(WD40结构)重复蛋白。它是一种多功能支架蛋白, 结合来自不同转导通路的信号分子并在多种哺乳动物发育过程中起关键作用。在植物中也存在RACK1同源基因, 如拟南芥基因组有3个编码RACK1蛋白质的基因, 这3个蛋白质与哺乳动物RACK1在氨基酸水平的相似性都超过75%。此外, 植物RACK1蛋白质包含的WD40数量、位置和蛋白激酶C结合位点的结构域在很大程度上是保守的。该文对植物RACK1蛋白的发现、结构及其在信号转导方面的功能进行综述。  相似文献   

2.
3.
4.
5.
6.
7.
8.
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.  相似文献   

9.
Li G  Lin F  Xue HW 《Cell research》2007,17(10):881-894
Phospholipase D (PLD) plays a critical role in plant growth and development, as well as in hormone and stress responses. PLD encoding genes constitute a large gene family that are present in higher plants. There are 12 members of the PLD family in Arabidopsis thaliana and several of them have been functionally characterized; however, the members of the PLD family in Oryza sativa remain to be fully described. Through genome-wide analysis, 17 PLD members found in different chromosomes have been identified in rice. Protein domain structural analysis reveals a novel subfamily, besides the C2-PLDs and PXPH-PLDs, that is present in rice - the SP-PLD. SP-PLD harbors a signal peptide instead of the C2 or PXPH domains at the N-terminus. Expression pattern analysis indicates that most PLD-encoding genes are differentially expressed in various tissues, or are induced by hormones or stress conditions, suggesting the involvement of PLD in multiple developmental processes. Transgenic studies have shown that the suppressed expression office PLDβ1 results in reduced sensitivity to exogenous ABA during seed germination. Further analysis of the expression of ABA signaling-related genes has revealed that PLDβ1 stimulates ABA signaling by activating SAPK, thus repressing GAmyb exoression and inhibiting seed germination.  相似文献   

10.
11.
Calcium plays a pivotal role in plant responses to several stimuli, including pathogens, abiotic stresses, and hormones. However, the molecular mechanisms underlying calcium functions are poorly understood. It is hypothesized that calcium serves as second messenger and, in many cases, requires intracellular protein sensors to transduce the signal further downstream in the pathways. The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plant cells. Here, we report our analysis of the CBL9 member of this gene family. Expression of CBL9 was inducible by multiple stress signals and abscisic acid (ABA) in young seedlings. When CBL9 gene function was disrupted in Arabidopsis thaliana plants, the responses to ABA were drastically altered. The mutant plants became hypersensitive to ABA in the early developmental stages, including seed germination and post-germination seedling growth. In addition, seed germination in the mutant also showed increased sensitivity to inhibition by osmotic stress conditions produced by high concentrations of salt and mannitol. Further analyses indicated that increased stress sensitivity in the mutant may be a result of both ABA hypersensitivity and increased accumulation of ABA under the stress conditions. The cbl9 mutant plants showed enhanced expression of genes involved in ABA signaling, such as ABA-INSENSITIVE 4 and 5. This study has identified a calcium sensor as a common element in the ABA signaling and stress-induced ABA biosynthesis pathways.  相似文献   

12.
Genetic differences in seed longevity of various Arabidopsis mutants   总被引:5,自引:0,他引:5  
Seeds gradually lose their viability during dry storage. The damage that occurs at the biochemical level can alter the seed physiological status and is affected by the storage conditions of the seeds. Although these environmental conditions controlling loss of viability have been investigated frequently, little information is available on the genetics of seed longevity. Using Arabidopsis mutants in defined developmental or biochemical pathways such as those affected in seed coat composition, seed dormancy, hormone function and control of oxidative stress, we tried to gain insight into the genes and mechanisms controlling viability of stored seeds. Mutations like abscisic acid insensitive3 ( abi3 ) as well as abscisic acid deficient1 ( aba1 ) show reduced longevity, which may be partially related to the seed dormancy phenotype of these mutants. Mutants with seed coat alterations, especially aberrant tests shape ( ats ), showed a stronger reduction in germination percentage after storage, indicating the importance of a 'functional' seed coat for seed longevity. A specific emphasis was placed on mutants affected in dealing with Reactive Oxygen Species (ROS). Because several pathways are involved in protection against ROS and because gene redundancy is a common feature in Arabidopsis , 'double' mutants were generated. These 'double' mutants and the corresponding single mutants were subjected to a controlled deterioration test (CDT) and a germination assay on hydrogen peroxide (H2O2) after prolonged storage at two relative humidities. CDT and germination on H2O2 affected all genotypes, although it appears that other effects like genetic background are more important than the deficiencies in the ROS scavenging pathway. Explanations for this limited effect of mutations affecting ROS scavenging are discussed.  相似文献   

13.
14.
15.
Proteomic analysis of arabidopsis seed germination and priming   总被引:33,自引:0,他引:33       下载免费PDF全文
To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.  相似文献   

16.
Arabinogalactan-proteins (AGPs) are extracellular proteoglycans that are implicated in many plant growth and developmental processes, but in no case has a biological function been assigned to a particular AGP. AtAGP30 is a non-classical AGP core protein from Arabidopsis that is expressed only in roots. Analysis of the corresponding mutant, agp30, has revealed that the wild-type gene product is required in vitro for root regeneration and in planta for the timing of seed germination. The mutant shows a suppression of the abscisic acid (ABA)-induced delay in germination and altered expression of some ABA-regulated genes. This suggests that AtAGP30 functions in the ABA response. By analogy to proteoglycan-mediated regulation of growth-factor-signalling pathways in animals, our data indicate that phytohormone activity in plants can be modulated by AGPs.  相似文献   

17.
18.
During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4–64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination.  相似文献   

19.
Histone acetylation is involved in the regulation of gene expression in plants and eukaryotes. Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from histones, which is associated with the repression of gene expression. To study the role of histone acetylation in the regulation of gene expression during seed germination, trichostatin A (TSA), a specific inhibitor of histone deacetylase, was used to treat imbibing Arabidopsis thaliana seeds. GeneChip arrays were used to show that TSA induces up-regulation of 45 genes and down-regulation of 27 genes during seed germination. Eight TSA-up-regulated genes were selected for further analysis – RAB18, RD29B, ATEM1, HSP70 and four late embryogenesis abundant protein genes (LEA). A gene expression time course shows that these eight genes are expressed at high levels in the dry seed and repressed upon seed imbibition at an exponential rate. In the presence of TSA, the onset of repression of the eight genes is not affected but the final level of repressed expression is elevated. Chromatin immunoprecipitation and HDAC assays show that there is a transient histone deacetylation event during seed germination at 1 day after imbibition, which serves as a key developmental signal that affects the repression of the eight genes. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号