首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of enzyme systems involved in the first steps of hexadecane oxidation can be induced by hexadecanol, an intermediate product of hexadecane degradation. It has also been found that, in Candida guilliermondii cells and in their mitochondrial fraction, an oxidase system is induced when the cells are grown on hexadecanol. This system is similar to that in cells grown on hexadecane; it oxidises higher alcohols at a high rate and is not inhibited by the inhibitors of the man phosphorylating respiration chain. The membrane-bound alcohol dehydrogenase and aldehyde dehydrogenase activities resistant to pyrazole, an inhibitor of cytosol ethanol dehydrogenase, are induced together with the oxidase activity when the cells are grown on hexadecanol as well as on hexadecane. The oxidation of higher alcohols by whole cells is entirely inhibited by azide although their oxidation by mitochondria is resistant to the action of azide; apparently, azide inhibits the transport of alcohols into the cell.  相似文献   

2.
The partition of hexadecane to the cell surface of Candida tropicalis was measured by incubating heat-inactivated cells with hexadecane-1-14C on a gyratory shaker. The free hexadecane was separated by centrifuging the cells through a 15% sucrose solution, and the partitioned hexadecane was quantified by scintillation spectrometry of the samples from the resulting cell sediment. Heat-inactivated cells did not take up hexadecane as determined by a membrane filtration technique involving organic solvent washing. The partitioning was a time-dependent process. The velocity increased by increasing the shake rate of te shaker. At 360 rpm and with baffled flasks, saturation of the cell surface with hexadecane was obtained after a 20 min incubation period. The amount of hexadecane partitioned depended on the initial hexadecane-to-cell concentration ratio. At a ratio of 5 μmol/mg cell protein the highest amount of hexadecane partitioned was measured at 2100 μmol/mg cell protein. At ratios higher than 6 μmol/mg cell protein the cells were no longer sedimentable by centrifugation. The partition of hexadecane to the cell surface was affected by removing the surface layer of the cell wall by Pronase treatment and by using detergents in the partition assay. Pronase treatment lowered the amount of hexadecane partitioned as a consequence of the removal of the lipophilic layer of the cell surface. Detergents influence the partition coefficient and also lowered the amount of hexadecane partitioning to the cell surface. At a low shaking intensity (280 rpm, unbaffled flasks), after Pronase treatment, and in the presence of detergents he uptake of hexadecane by the cells was limited by the partitioning.  相似文献   

3.
Cell surface hydrophobicity may be an important factor contributing to the virulence of Candida yeast cells. Surface hydrophobic and surface polar groups would be required for a yeast cell to act as a surface-active agent. In this report, the surface activities of whole yeast cells were measured. Yeast cells added at 10(8)/ml reduced the surface tension (gamma s) of saline by 20% as determined by the du Nouy method. A 1% suspension of yeast cell wall fragments reduced gamma s of saline by 36%. Whole yeast cells caused a reduction in interfacial tension (gamma I) between hexadecane and saline. The reduction of gamma I was proportional to the surface hydrophobicity of the yeasts. Yeast cells grown in glucose as the sole carbon source (thus possessing a relatively more hydrophilic cell surface) reduced gamma I by 30%, whereas yeast cells grown in hexadecane (thus possessing a more hydrophobic cell surface) reduced gamma I by 41%. The reduction of gamma I was reversed upon the addition of a strong surfactant. It was also demonstrated that yeast cells blended with nonionic surfactants during growth in a glucose broth in order to change their cell surface hydrophobicity adhered to solid surfaces in direct proportion to their cell surface hydrophobicity. Thus, the surface-active properties of Candida yeast cells may significantly contribute to the accumulation of yeast cells at various biological interfaces such as liquid-solid, liquid-liquid, and liquid-air, leading to their eventual adhesion to solid or tissue surfaces.  相似文献   

4.
Surface-active properties of Candida albicans.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cell surface hydrophobicity may be an important factor contributing to the virulence of Candida yeast cells. Surface hydrophobic and surface polar groups would be required for a yeast cell to act as a surface-active agent. In this report, the surface activities of whole yeast cells were measured. Yeast cells added at 10(8)/ml reduced the surface tension (gamma s) of saline by 20% as determined by the du Nouy method. A 1% suspension of yeast cell wall fragments reduced gamma s of saline by 36%. Whole yeast cells caused a reduction in interfacial tension (gamma I) between hexadecane and saline. The reduction of gamma I was proportional to the surface hydrophobicity of the yeasts. Yeast cells grown in glucose as the sole carbon source (thus possessing a relatively more hydrophilic cell surface) reduced gamma I by 30%, whereas yeast cells grown in hexadecane (thus possessing a more hydrophobic cell surface) reduced gamma I by 41%. The reduction of gamma I was reversed upon the addition of a strong surfactant. It was also demonstrated that yeast cells blended with nonionic surfactants during growth in a glucose broth in order to change their cell surface hydrophobicity adhered to solid surfaces in direct proportion to their cell surface hydrophobicity. Thus, the surface-active properties of Candida yeast cells may significantly contribute to the accumulation of yeast cells at various biological interfaces such as liquid-solid, liquid-liquid, and liquid-air, leading to their eventual adhesion to solid or tissue surfaces.  相似文献   

5.
A comparative study of cell cytosol alcohol dehydrogenase (ADH) from yeast Torulopsis candida IBFM-Y-127 grown on glucose and hexadecane which were the only source of carbon, was made. In both cases ADH had a pH optimum within the range of 7.0--10.0, when various normal primary alcohols (C2--C16) were used. The enzyme was active only in the presence of NAD, which cannot be substituted by NADP. The total activity of ADH decreased approximately 8-fold when the length of hydrocarbon radicals was changed from C2 up to C16. When the cells were grown on hexadecane, only ethyl, n-buthyl, n-amyl and n-hexyl alcohols were active as substrates. The dehydration rate of each alcohol was far lower than that for the cytosol of glucose-grown cells. In the latter case the enzyme activity also decreased with an increase in the alcohol radical from C2 to C6. In all cases studied methyl alcohol and cyclic (cinnamyl alcohol--C8) alcohol were not dehydrated at all. Disc-electrophoresis in polyacrylamide gel, involving gel colouration for the assay of enzyme activity showed that glucose--grown cell cytosol contained three forms of ADH. One of those forms was highly active when short--chain normal primary alcohols were used; this form may be probably regarded as "classical" ADH (EC 1.1.1.1). The two other forms caused intensive dehydration of long-chain alcohols (the best substrates were C7--C10 alcohols for one form and C10--C14 for the others). The two forms of ADH are probably isoenzymes of octanol dehydrogenase (EC 1.1.1.73). Cytosol of cells grown on n-alcane, had a reduced number of ADH forms. The data obtained are discussed in terms of the regulatory role of carbon and energy source (glucose or hexadecane) in the redistribution of alcohol dehydrogenases between structural components of cells (mitochondria) and cytosol.  相似文献   

6.
Electron microscopy showed that electron-dense granules accumulated in Propionibacterium acnes in larger amounts when the bacteria were grown on a phosphate-rich medium. X-ray microanalysis demonstrated that the granules contained mostly phosphorus and potassium, indicating that the cells contained polyphosphate granules. When cells were grown on a complex Bacto-agar medium, the amount and the size of the polyphosphate granules were reduced. Polyphosphate was also detected with 31P nuclear magnetic resonance (31P-NMR). Of the polyphosphates observed with 31P-NMR, 20% seemed to be located outside the cell membrane. Broad-band near-ultraviolet irradiation (emission maximum 366 nm) corresponding to doses that killed 37% of the cells increased the amount of polyphosphate in cells grown on the phosphate-rich medium. The fluorescent chromophore 4',6-diamidino-2-phenylindole (DAPI) shifted the fluorescence emission from 478 to 538 nm when bound to polyphosphate and excited at 340 nm. DAPI was used to detect polyphosphates generated after near-ultraviolet irradiation of the cells. Nonirradiated cells showed no increased fluorescence at 538 nm, indicating no polyphosphate is presented in the cells. We conclude that DAPI did not have "access" to the intracellular polyphosphate as long as the cells were not light damaged. This observation is important for the interpretation of near-UV damage to cells.  相似文献   

7.
When Cladosporium resinae is provided with n-hexadecane and glucose, n-hexadecane is used preferentially. Studies using [14C]glucose indicated that n-hexadecane did not inhibit glucose uptake but did retard oxidation of glucose to CO2 and assimilation of glucose carbon into trichloroacetic acid-insoluble material. Glucose could be recovered quantitatively from hydrocarbon-grown cells that had been transferred to glucose. Four enzymes that may be involved in glucose metabolism, hexokinase, glucose-6-phosphate dehydrogenase, glucose-phosphate isomerase, and succinate dehydrogenase, were not detected in cells grown on hexadecane but were present in cells grown on glucose. Addition of hexadecane to extracts of glucose-grown cells resulted in immediate loss of activity for each of the four enzymes, but two other enzymes did not directly involved in glucose metabolism, adenosine triphosphatase and alanine-ketoacid aminotransferase, were not inhibited by hexadecane in vitro. Cells grown on hexadecane and transferred to glucose metabolize intracellular hexadecane; after 1 day, activity of hexokinase, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, and succinate dehydrogenase could be detected and 22% of the intracellular hydrocarbon had been metabolized. Hexadecane-grown cells transferred to glucose plus cycloheximide showed the same level of activity of all the four enzymes as cells transferred to glucose alone. Thus, intracellular n-hexadecane or a metabolite of hexadecane can inthesis of those enzymes is not inhibited.  相似文献   

8.
Summary Corynebacterium lepus produced a considerable amount of extracellular surfactant during growth in a mineral salts medium containing hexadecane as the sole carbon source. The study revealed that the bacterium also produced a large amount of surfactant when grown on glucose, but in this case the surface active agent was cell bound. The surfactant was released from the cells when they were treated with hexadecane after growth. Tetradecane also showed a good capability for release of the surfactant. Decane and octane were less effective than hexadecane and tetradecane.  相似文献   

9.
In 3-day-old cultures of Bacteroides succinogenes grown on filter paper, no cell division was observed. When grown on cellulosic substrate, bacteria exhibited vesicles clustered within cell wall pockets. In 2 day-old filter paper cultures, cells adhered tightly to the substrate. Twenty to 30% of them were dividing. There were cell wall pockets in about 25% of the bacteria, but no vesicles. Whether they adhered to the cellulosic substrate or not, and irrespective of the age of the bacteria, storage polysaccharides were found in the form of dense granules in the cytoplasm. It would appear that vesicles are not essential for cellulose degradation, but are rather a sign of ageing of the cells.  相似文献   

10.
Bacterial Cell Production from Hexadecane at High Temperatures   总被引:2,自引:2,他引:0       下载免费PDF全文
On mineral medium with hexadecane as the sole carbon source, stable mixed bacterial enrichment cultures were obtained from soil inoculum at 25, 35, 45, 55, and 65 C. Cell yields (grams of dry cells per gram of hexadecane) were determined for each of the enrichment cultures grown at the temperature at which they were enriched, and also for the 55 and 65 C cultures grown at various temperatures. In all cases, cell yields decreased with increasing growth temperature. The highest yield obtained at 65 C was 0.26, and the lowest yield obtained at 25 or 35 C was 1.02. Slower growth was observed at higher temperatures.  相似文献   

11.
Both ethidium bromide and propidium iodide stain growing yeast. As visualized in the fluorescence microscope, ethidium stains the nucleus and cytoplasm in wild type yeast and in those grown in 10% dextrose, with brightly fluorescent cytoplasmic granules being present in both. Under the latter conditions, the mitochondria are repressed but not absent. In rho 0 cells, in which the mitochondrial DNA is absent, ethidium appears to bind to the cell wall or membrane preferentially with no cytoplasmic granules being visible. In all cell types, propidium appears to bind the cell wall or membrane with no cytoplasmic granules being visible in any cell. The staining patterns thus suggest greater differences in the binding of these two types to mitochondrial DNA in situ than is suggested by their in vitro behavior. These differences in binding could explain their different mutagenic capacities..  相似文献   

12.
13.
Isolated plasma membranes from the yeast Candida tropicalis grown on two different carbon sources (glucose or hexadecane), had similar contents of protein (60% of total dry weight), lipid (21-24%) and carbohydrates (16-21%). Sodium dodecyl sulphate gel electrophoresis of the membrane proteins revealed 17 and 19 protein bands, respectively, for glucose and hexadecane grown cells. There were marked differences in RF values and relative peak heights between the two gels. Sterols and free fatty acids were the major components of the plasma membrane lipids. Phospholipid content was less than 2% of total plasma membrane lipids. Membrane microviscosity, as determined by fluorescence polarization, was very high (16.6 P). Fatty acid determination of membrane lipids by gas chromatography showed a significant increase of C16 fatty acids in plasma membranes of cells grown on hexadecane. Reduced-oxidized difference spectra demonstrated the presence of a b-type cytochrome in both Saccharomyces cerevisiae and C. tropicalis plasma membranes. Its concentration in C. tropicalis plasma membranes was three-fold greater in cells grown on hexadecane than in glucose grown cells.  相似文献   

14.
Stimulation of Lipase Production During Bacterial Growth on Alkanes   总被引:3,自引:0,他引:3       下载免费PDF全文
Acinetobacter lwoffi strain O16, a facultative psychrophile, can grow on crude oil, hexadecane, octadecane, and most alkanes when tested at 20 but not at 30°C. Growth occurred on a few alkanes at 30°C but after a longer lag than at 20°C. Cells grown on alkanes as sole carbon sources had high levels of cell-bound lipase. In contrast, previous work has shown that those grown on complex medium produced cell-free lipase and those grown on defined medium without alkanes produced little or no lipase. Low concentrations of the detergent Triton X-100 caused the liberation of most of the lipase activity of alkane-grown cells and increased total lipase activity. When ethanol and hexadecane were both present in a mineral medium, diauxic growth occurred; until the ethanol was completely used up, hexadecane was not utilized, and the lipase activity was very low. When growth on hexadecane began, lipase activity increased, reaching a level 50- to 100-fold higher than that of cells growing on ethanol. A similar pattern of lipase formation and hexadecane utilization was observed with Pseudomonas aeruginosa. Whenever A. lwoffi and other bacteria degraded alkanes they exhibited substantial lipase activity. Not all bacteria that produced lipase, however, could attack alkanes. Bacteria that could not produce lipase did not attack alkanes. The results suggest that a correlation may exist between lipase formation and alkane utilization.  相似文献   

15.
A Micrococcus cerificans strain was grown on simple media with n-hexadecane or gas oil as sole carbon sources. Samples of cellular material recovered from hexadecane or gas oil fermentations do not appear to differ significantly in their composition. The protein content varied from 68 to 75%. With the exception of sulfur amino acids the amino acid distribution compares favorably with the FAO standard reference protein. The biological value of cell protein recoveered from hexadecane fermentations was 67 (cascin, 70). In the case of gas oil grown cells, the cell material recovered had to be completely purified in order to improve its protein quality. After fully extraction of undersirable fraction with petroleum ether in a Soxhlet apparatus the biological value observed was 63.  相似文献   

16.
The ventriculus and the midgut caeca of the fed females of Anystis baccarum (L.) were investigated by using light and electron microscopy. In addition to the main type of polyfunctional digestive cells, special secretory cells were detected in the anterior region of the ventriculus. The shape and the ultrastructure of the digestive cells vary depending on their physiological state. Intracellular digestion, absorption or excretion processes prevail at different stages of the cell cycle. The secretory cells are characterized by the presence of extensive rough endoplasmic reticulum, filling whole space of the cell. These cells do not contain the apical network of pinocytotic canals, which are typical for the digestive cells. Three types of secretory granules were found in the cytoplasm of the secretory cells that probably correspond to three sequential stages of granulogenesis. The primary secretory granules are formed by the fusion of Golgi vesicles. The primary granules fuse to form complex vesicles with heterogeneous contents. These secondary granules aggregate to form very large inclusions of high electron density (tertiary secretory granules), which probably represent the storage of the secretory product. All types of secretory granules were observed close to the apical plasmalemma.  相似文献   

17.
Phase-partitioning studies of the euryhaline bacterium Halomonas elongata demonstrated that the hydrophobic-hydrophilic nature of the cell surface changed as the bacterium grew in different NaCl concentrations. Mid-log-phase cells grown in a high (3.4 M) NaCl concentration were more hydrophilic than were cells grown in a low (0.05 M) NaCl concentration. Mid-log-phase cells from defined medium containing 3.4 M NaCl normally produced a hydrophobicity reading of only 14 (hexadecane hydrophobicity = 100), while corresponding cells from defined medium containing 0.05M NaCl gave a hydrophobicity reading of 90. Compared with cells grown in low salt concentrations, cells grown in high salt concentrations were more hydrophilic at all stages of growth. Rapid suspension of log-phase cells grown in 1.37 M NaCl into a 0.05 or 3.4 M NaCl solution produced no detectable rapid changes in surface hydrophobicity. These data suggest that as H. elongata adapts to different NaCl concentrations, it alters the affinity of its outermost cell surface to water.  相似文献   

18.
Summary This paper describes a modification of a cytochemical method for the demonstration of heavy metals. The well localized precipitate in the mast cell granules, which is also present in granules that have been separated from the cell, suggests that the metals are localized in the granules. It is demonstrated that mast cell grown cultures do not contain precipitate. The chelating and histamine inhibiting agent 8-hydroxyquinoline produced no changes in the histochemical pattern of the mast cell granules before nor after treatment with the histamine liberator 48/80 which provokes a release of granules from the cells. These observations suggest either that the metal (zinc) is bound to the granules in such a manner that the chelating agent cannot chemically, or based on the configurations of the metal-containing molecule, reach the metal and theraby prevent its transformation to a metal suphide.  相似文献   

19.
Pseudomonas aeruginosa ATCC 9027 grew on 0.5% (v/v) hexadecane as a sole carbon source in a chemically defined medium which required the addition of Fe3+ and Ca2+. There was a variable and extended lag period before an active growth rate was attained. Visible light microscopic evidence revealed that the bacteria did not adhere to hexadecane droplets suggesting the absence of a bioemulsifier. When compared with glucose-grown cells, hexadecane-grown cells produced 75% less lipopolysaccharide (on a total protein basis); this lipopolysaccharide contained 30-40% less carbohydrate, yet 50-75% more 2-keto-3-deoxyoctonate. These chemical changes made the cell surface appear more hydrophobic when tested in a biphasic hydrophobicity index system. Electron microscopy of thin sections and freeze etchings revealed hexadecane-grown cells contained granules which were judged to be polyphosphate by energy dispersive X-ray analysis. There was no apparent major morphological envelope alteration within the two cell types.  相似文献   

20.
The distribution of cellular fatty acids in defined lipid classes was analyzed in Micrococcus cerificans after growth on specified hydrocarbons. Neutral lipid, phospholipid, and cell residue fatty acids were qualitatively and quantitatively determined for M. cerificans grown on nutrient broth, tetradecane (C(14)), pentadecane (C(15)), hexadecane (C(16)), and heptadecane (C(17)), respectively. Percentage of total cellular fatty acid localized in defined lipid classes from cells grown on the above growth substrates was (i) neutral lipid-11.8, 1.81, 7.74, 23.1, and 2%; (ii) phospholipid-74.5, 65, 66.43, 62.1, and 86%; (iii) cell residue lipid-13.5, 33.29, 25.82, 14.78, and 11.9%. Phospholipid fatty acid chain length directly reflected the carbon number of the alkane substrate, with 40, 84, 98, and 77% of the fatty acids being 14, 15, 16, and 17 carbons when cells were grown on C(14), C(15), C(16), and C(17)n-alkanes, respectively. The bound lipids of the cell residue after chloroform-methanol extraction were characterized by 2-hydroxydodecanoic and 2-hydroxytetradecanoic acids plus a broad spectrum of fatty acids ranging from C(10) to C(17) chain length. An increase in total unsaturated fatty acid localized in the phospholipids was noted from cells grown on alkanes greater than 15 carbons long. An extracellular accumulation of free fatty acid (FFA) was demonstrated in hexadecane-grown cultures that was not apparent in non-hydrocarbon-grown cultures. Identification of extracellular FFA demonstrated direct derivation from hexadecane oxidation. Studies supporting inhibition of de novo fatty acid biosynthesis in relationship to extracellular FFA and hexadecane oxidation are described. The ability to alter the fatty acid composition of membrane polar lipids in a predictable manner by the alkane carbon source provides an excellent model system for the investigation of membrane structure-function relationships in M. cerificans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号