首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe two factors in human placenta that modulate the interaction of phorbol ester tumor promoters with cell membranes or with protein kinase C. One, phorbol ester binding inhibitory factor, can inhibit binding of [3H]phorbol-12,13-dibutyrate to cultured cells or to a membrane fraction but does not inhibit its binding to a homogeneous C kinase preparation (phorbol ester binding sites). The other, C kinase activating factor, stimulates C kinase activity in a calcium-dependent manner. We separated these two biochemical activities from a crude human placental fraction by gel filtration.  相似文献   

2.
Ganglioside GM3 and 12-O-tetradecanoylphorbol-13-acetate activated protein kinase C as substitutes for phosphatidylserine and diacylglycerol. Hydrophobic gangliosides such as GM4 and GM3 were rather more potent activators of protein kinase C than hydrophilic ones such as GD1a and GT1b. Active tumor promoters such as teleocidin, mezerein, phorbol 12,13-acetate and phorbol 12,13-dibenzoate also activated protein kinase C, but not inactive tumor promoters such as phorbol and 4-alpha-phorbol 12,13-didecanoate.  相似文献   

3.
A tumor-promoting phorbol ester, [3H]phorbol-12,13-dibutyrate, may bind to a homogeneous preparation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) in the simultaneous presence of Ca2+ and phospholipid. This tumor promoter does not bind simply to phospholipid nor to the enzyme per se irrespective of the presence and absence of Ca2+. All four components mentioned above appear to be bound together, and the quaternary complex thus produced is enzymatically fully active for protein phosphorylation. Phosphatidylserine is most effective. Various other phorbol derivatives which are active in tumor promotion compete with [3H]phorbol-12,13-dibutyrate for the binding, and an apparent dissociation binding constant of the tumor promoter is 8 nM. This value is identical with the activation constant for protein kinase C and remarkably similar to the dissociation binding constant that is described for intact cell surface receptors. The binding of the phorbol ester is prevented specifically by the addition of diacylglycerol, which serves as activator of protein kinase C under physiological conditions. Scatchard analysis suggests that one molecule of the tumor promoter may bind to every molecule of protein kinase C in the presence of Ca2+ and excess phospholipid. It is suggestive that protein kinase C is a phorbol ester-receptive protein, and the results presented seem to provide clues for clarifying the mechanism of tumor promotion.  相似文献   

4.
Activation of protein kinase C by non-phorbol tumor promoter, mezerein   总被引:12,自引:0,他引:12  
Mezerein, classified as a second-stage tumor promoter, has no diacylglycerol-like structure in its molecule, but can activate protein kinase C both in vitro and in vivo. This non-phorbol diterpene competitively inhibits the specific binding of a radioactive tumor-promoting phorbol ester to the enzyme. It is suggestive that tumor-promoting phorbol esters and mezerein cause analogous changes in the membrane to activate protein kinase C, and utilize this protein kinase as a common receptive protein for tumor promotion.  相似文献   

5.
The major interaction site for tumor-promoting phorbol esters is the calcium-activated, phospholipid-dependent protein kinase (protein kinase C), a key-element in signal transduction. Binding of phorbol esters results in enzyme activation which mediates, at least in part, the action of these agents. We have investigated the effects of tumor promoter chloroform on protein kinase C activity. Like thrombin and 12-O-tetradecanoylphorbol-13-acetate (TPA), chloroform was able to activate protein kinase C in intact rabbit platelets. In addition, chloroform stimulated enzyme activity as well as TPA binding capacity in cell-free system. Scatchard analysis of the data has shown that chloroform increased the number of phorbol ester binding sites. Structurally related compounds, carbon tetrachloride and methylene chloride, activated the enzyme similarly.  相似文献   

6.
Talin is a high molecular weight phosphoprotein that is localized at adhesion plaques. We have found that talin phosphorylation increases 3.0-fold upon exposure of chicken embryo fibroblasts to the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. Talin isolated from tumor promoter-treated cells is phosphorylated on serine and threonine residues. Vinculin, a 130 kDa talin-binding protein, also exhibits increased phosphorylation in vivo in response to tumor promoter, but to a lesser degree than does talin. Because tumor-promoting phorbol esters augment protein kinase C activity, we have compared the ability of purified protein kinase C to phosphorylate talin and vinculin in vitro. Both talin and vinculin were found to be substrates for protein kinase C; however, talin was phosphorylated to a greater extent than was vinculin. Cleavage of protein kinase C-phosphorylated talin by the calcium-dependent protease (Type II) revealed that while both the resulting 190-200 and 46 kDa proteolytic peptides were phosphorylated, the majority of label was contained within the 46-kDa fragment. Although incubation of chicken embryo fibroblasts with tumor-promoting phorbol ester induces a dramatic increase in talin phosphorylation, we detected no change in the organization of stress fibers and focal contacts in these cells. Exposure of the cells to tumor promoter did, however, result in a loss of actin and talin-rich cell surface elaborations that resemble focal contact precursor structures.  相似文献   

7.
Translocation of Protein Kinase C in Anterior Pituitary Tumor Cells   总被引:5,自引:5,他引:0  
Previous studies have shown that phorbol esters and lithium each stimulate the secretion of adrenocorticotropic hormone (ACTH) by the anterior pituitary tumor cell line AtT20/D16-16. Pretreatment with either lithium or phorbol ester desensitizes the cells to subsequent stimulation by phorbol ester. An early consequence of phorbol ester action in other systems is the translocation of protein kinase C from cytosol to membranes. We have assayed protein kinase C activity in cytosol and membranes of AtT20 cells after treatment with phorbol dibutyrate, lithium, or other agents that stimulate secretion of ACTH in these cells. Phorbol dibutyrate clearly induced translocation of protein kinase C, but lithium treatment did not cause translocation itself, nor did pretreatment with lithium affect the translocation induced by phorbol dibutyrate. These results are consistent with a role for translocation of protein kinase C in the stimulatory and desensitizing effects of phorbol esters but fail to implicate translocation in the actions of lithium on AtT20 cells.  相似文献   

8.
The effects of in vivo administration of the cyclodiene tumor promoter heptachlor epoxide on mouse liver protein kinase C were studied in male B6C3F1 mice by protein kinase C activity assays and Western blotting under conditions known to increase the incidence of hepatocellular carcinoma because protein kinase C is thought to be critical in phorbol ester-induced tumor promotion. Under these test conditions, 20 ppm dietary heptachlor epoxide for 1-20 days increased cytosolic and decreased particulate total protein kinase C activities, while 10 ppm had no effect. Further, total cytosolic and particulate protein kinase C activities were decreased within 1 hour by 10 mg/kg intraperitoneal (i.p.) heptachlor epoxide. Western blotting showed that conventional protein kinase Calpha and beta isoforms were unaffected by heptachlor epoxide. Particulate novel protein kinase Cepsilon, however, was selectively down-regulated by 1, 10, and 20 ppm dietary heptachlor epoxide, whereas the cytosolic isoform was decreased by 1 and 10 ppm heptachlor epoxide for 10 days. The high-dose treatment for 24 hours also decreased particulate novel protein kinase Cepsilon but increased the cytosolic titer. These results demonstrate that this isoform is unique in its sensitivity to heptachlor epoxide. Activator protein-1 DNA binding, a critical factor in tumor promotion, was substantially increased at 3 and 6 hours with 3.7 mg/kg (i.p.) heptachlor epoxide and at 3 and 10 days with 20 ppm dietary heptachlor epoxide. The effects of heptachlor epoxide on protein kinase C and activator protein-1 are similar to those caused by phorbol ester treatments and correlate well to heptachlor levels found to induce tumors in mice. However, heptachlor epoxide did not initially activate protein kinase C with in vivo treatments or with in vitro treatments of a plasma membrane fraction aimed at demonstrating direct activation, as has been shown for phorbol esters. The ability of heptachlor epoxide to down-regulate particulate novel protein kinase Cepsilon correlates to dosages used in in vivo tumor promotion studies. However, this may represent a negative feedback response rather than a causative effect.  相似文献   

9.
Tumor promoting phorbol esters are able to activate Ca2+-sensitive, phospholipid-dependent protein kinase (protein kinase C) in a reconstituted system. Indol alkaloid teleocidin, a tumor promoter, has been found to be as potent as tumor promoters from the series of phorbol esters and mezerein in activating the mouse brain enzyme. Chemically unrelated tumor promoters such as tetrachlorodibenzo-p-dioxin, anthralin and phenobarbital are devoid of effect. Diacylglycerol 1,2 diolein strongly activated the enzyme whereas 1,3 diolein like 1,2 distearin were poor activators and 1,3 distearin was inactive. Although tumor-promoter-or diacylglycerol-mediated activation of protein kinase C was observed in the presence of 0.5mM EGTA, the reaction requires traces of Ca2+. Tumor promoters did not prevent inhibitory action of antipsychotic phenothiazines and local anesthetics but appear to increase IC50 of these drugs.  相似文献   

10.
There is increasing evidence that protein kinase C plays a role in the transduction of an activation signal in lymphocytes. The bulk of this evidence is based on pharmacological experiments involving the tumor promoter phorbol myristate acetate (PMA) as a protein kinase C agonist. However, in cytotoxic T lymphocytes, PMA has been shown to both stimulate and inhibit lytic function. By examining the effects of a series of phorbol esters on protein kinase C activity in lymphocytes, we will demonstrate that these antagonistic effects of PMA on cytotoxic T lymphocyte function are related to multiple effects of PMA on protein kinase C activity.  相似文献   

11.
Activated macrophages can recognize, bind to, and lyse tumor cells in an antibody-independent manner. We have found that tumor cells pretreated with phorbol esters are markedly less susceptible to macrophage-mediated cytolysis, although the initial binding step is unaffected. Tumor cells preincubated with tumor-promoting phorbol esters (10(-8)-10(-6) M) were rendered resistant to macrophage kill whereas non-tumor-promoting derivatives were inactive in protecting tumor cells against cytolysis. Inhibition of [3H]phorbol-12,13-dibutyrate binding by other phorbol esters correlated with their potency as tumor promoters and their ability to render tumor cells resistant to macrophage killing. The role of protein kinase C as the receptor to phorbol esters was implicated by inhibition of PDBu binding by phenothiazine derivatives. This suggests a possible mechanism for the resistance of phorbol ester-treated tumor cells to macrophage-mediated cytolysis.  相似文献   

12.
Analysis of the effects of phorbol diesters on mouse B lymphocyte kinase C activity, membrane potential, mI-A expression, and cell cycle state are reported. Results indicate that the phorbol diesters PMA and 4 beta-PDD, which are potent tumor promoters, activate partially purified B cell protein kinase C and stimulate B cell membrane depolarization and increased mI-A expression. The analog 4 alpha-PDD has none of these effects. Similarly, none of the phorbol diesters tested promoted G0 to G1 transition of B lymphocytes. Results are consistent with the possibility that the transmembrane signal transduction mediated by cell membrane immunoglobulin, which results in membrane depolarization and increased I-A antigen expression, operates via activation of protein kinase C.  相似文献   

13.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

14.
I examined whether the phorbol ester-mediated inhibition of glycerol 3-phosphate dehydrogenase (GPDH) induction could be mimicked by raising the cellular diacylglycerol levels. Phorbol ester tumor promoters and diacylglycerols activate protein kinase C. An increase in radiolabeled diacylglycerol levels in C6 rat glioma cells was observed when cells were prelabeled overnight with [3H]arachidonic acid and treated with either phospholipase C (Clostridium perfringens) or 2-bromooctanoate. The increase was dose dependent. The diacylglycerols competed with [20-3H]phorbol 12,13-dibutyrate in binding to the phorbol ester receptor. A Scatchard analysis of the binding of cells treated with 0.1 unit/ml of phospholipase C demonstrated that the inhibition was mainly due to a decrease in binding affinity and not in the total number of binding sites. 2-Bromooctanoate and phospholipase C, but not the synthetic diacylglycerol 1-oleoyl 2-acetyl glycerol, inhibited the glucocorticoid induction of GPDH levels. Boiled phospholipase C, phospholipase A2, or phospholipase D was ineffective in inhibiting induction, a result suggesting that the inhibition was not due to nonspecific membrane perturbation. Thus, inhibition of the glucocorticoid-mediated increase in GPDH induction is most likely mediated by protein kinase C, and not by an alternate phorbol ester receptor.  相似文献   

15.
The new potent tumor promoters teleocidin and debromoaplysiatoxin , which are structurally unrelated to phorbol esters, activate Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C). The concentrations of 12-O-tetradecanoylphorbol-13-acetate, teleocidin and debromoaplysiatoxin for half-maximum activation of protein kinase C were found to be approximately 3 ng/ml, 40 ng/ml and 400 ng/ml, respectively. These three types of tumor promoters bind to protein kinase C, and appear to exhibit their pleiotropic actions through activation of this enzyme.  相似文献   

16.
Phosphorylations of two proteins (27 KDa, 32 KDa) in oat cells were dependent on phytochrome action. To determine which kinase system(s) for the phosphorylation of these two proteins are controlled by the phytochrome, involvement of the Ca2+/DG dependent protein kinase (protein kinase C) was first investigated. When a protein kinase C inhibitor (1-(5-isoquinoline sulfonyl)-2-methylpiperazine:H-7) or the inositol phospholipid metabolic blocker Li+ was added into the cell suspension, respectively, the phosphorylations of these two proteins were substantially reduced. On the other hand, an addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG:activator of protein kinase C) or phorbol 12-myristate 13-acetate (TPA: tumor promoting phorbol ester) enhanced the phosphorylations of these proteins. These results suggest that phytochrome action is certainly connected with the protein phosphorylation via the activation of protein kinase C or a similar molecule with protein kinase C.  相似文献   

17.
In previous studies we have reported that gastrin exerts a trophic effect on rat colonic epithelial cells in vitro. The effect of gastrin appeared to be mediated through a protein kinase C mechanism. In this study, we have characterized the role of protein kinase C in the gastrin-induced stimulation. Gastrin, in a time- and dose-dependent manner, increased protein kinase C translocation from the cytosol to the membrane, an index of enzyme activation. Maximum translocation occurred in 1 to 2 min following exposure to gastrin (10−8 M), before declining back to baseline level within 5 min. Gastrin did not change total protein kinase C activity in the colonic cells. Staurosporine, an inhibitor of protein kinase C, totally abolished the basal as well as the gastrin-stimulated activity of protein kinase C. The tumor promoter phorbol 12-myristate 13-acetate also stimulated colonic epithelial protein kinase C. However, prolonged treatment of cells with phorbol inhibited their subsequent response to gastrin stimulation. The response to gastrin was also prevented by the gastrin receptor antagonist proglumide. These observations suggest that protein kinase C mediates the stimulatory effect of gastrin on colonic epithelial cells, possibly through a receptor mechanism.  相似文献   

18.
The ability of phorbol esters to promote tumor formation and alter cell differentiation has been attributed to its action on a number of critical cellular functions, in particular, on protein phosphorylation, through the activation of protein C kinase. The present paper describes the effects of PMA (phorbol 12-myristate 13 acetate) on in vitro chondrogenesis in non-passaged, embryonic limb bud cells, relative to the effects of Bryostatin I. This compound also activates C kinase and binds competitively to the phorbol ester receptor, yet does not affect cell differentiation. Levels of PMA as low as 10(-7) M markedly reduced cartilage formation in 4-day cultures, as indicated by nodule count and Alcian blue staining for chondroitin sulfate. Coadministration of Bryostatin I at equimolar concentration prevented the PMA inhibitory effect on chondrocytic expression. This confirms other findings that phorbol activation of C kinase cannot exclusively account for the activity of phorbol on cell expression, i.e., that other pathway(s) must also be involved. Altering the time of PMA exposure demonstrated that PMA inhibited chondrocyte phenotypic expression, rather than cell commitment: early (0-48 h) exposure to PMA (during chondrocytic commitment in vitro) had little inhibitory effect on the staining index, whereas, exposure from 49-96 h (presumably post-commitment) and 0-96 h had moderate and strong inhibitory effects, respectively, on cartilage synthesis. Further research on the phorbol/Bryostatin I interaction should add to our knowledge of the control processes involved in tumor promotion and cell differentiation.  相似文献   

19.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

20.
Prolactin stimulates a hepatotrophic response similar to that caused by phorbol esters or partial hepatectomy in rats. Since phorbol esters, which activate protein kinase C, mimic prolactin action in liver, the relationship between prolactin administration and subsequent hepatic protein kinase C translocation was assessed. Prolactin administration rapidly stimulated a 4-fold elevation of membrane protein kinase C activity. The effect of prolactin on hepatic protein kinase C was specific for lactogenic hormones but could be duplicated by phorbol esters. Further, an increase in serum prolactin was demonstrated subsequent to partial hepatectomy and preceding hepatic protein kinase C translocation. Therefore, translocation of hepatic protein kinase C appears important for hepatic proliferation in response to prolactin administration and to partial hepatectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号