首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, the population sizes of E. coli O157:H7 increased 4.0-, 4.5-, and 11.0-fold on lettuce leaves that were mechanically bruised, cut into large pieces, and shredded into multiple pieces, respectively. During the same time, E. coli O157:H7 population sizes increased only twofold on leaves that were left intact after harvest. Also, the population size of E. coli O157:H7 was 27 times greater on young leaves affected by soft rot due to infection by Erwinia chrysanthemi than on healthy middle-aged leaves. Confocal microscopy revealed that leaf tip burn lesions, which are caused by a common physiological disorder of lettuce, harbored dense populations of E. coli O157:H7 cells both internally and externally. Investigation of the colonization of cut lettuce stems by E. coli O157:H7 showed that the pathogen grew 11-fold over 4 h of incubation after its inoculation onto the stems, from which large amounts of latex were released. The results of this study indicate that plant tissue damage of various types can promote significant multiplication of E. coli O157:H7 over a short time and suggest that harvesting and processing are critical control points in the prevention or reduction of E. coli O157:H7 contamination of lettuce.  相似文献   

2.
Escherichia coli O157:H7 continues to be an important human pathogen and has been increasingly linked to food-borne illness associated with fresh produce, particularly leafy greens. The aim of this work was to investigate the fate of E. coli O157:H7 on the phyllosphere of lettuce under low temperature and to evaluate the potential hazard of viable but nonculturable (VBNC) cells induced under such stressful conditions. First, we studied the survival of six bacterial strains following prolonged storage in water at low temperature (4°C) and selected two strains with different nonculturable responses for the construction of E. coli O157:H7 Tn7gfp transformants in order to quantitatively assess the occurrence of human pathogens on the plant surface. Under a suboptimal growth temperature (16°C), both E. coli O157:H7 strains maintained culturability on lettuce leaves, but under more stressful conditions (8°C), the bacterial populations evolved toward the VBNC state. The strain-dependent nonculturable response was more evident in the experiments with different inoculum doses (10(9) and 10(6) E. coli O157:H7 bacteria per g of leaf) when strain BRMSID 188 lost culturability after 15 days and strain ATCC 43895 lost culturability within 7 days, regardless of the inoculum dose. However, the number of cells entering the VBNC state in high-cell-density inoculum (approximately 55%) was lower than in low-cell-density inoculum (approximately 70%). We recorded the presence of verotoxin for 3 days in samples that contained a VBNC population of 4 to 5 log(10) cells but did not detect culturable cells. These findings indicate that E. coli O157:H7 VBNC cells are induced on lettuce plants, and this may have implications regarding food safety.  相似文献   

3.
4.
Vacuum cooling is a common practice in the California leafy green industry. This study addressed the impact of vacuum cooling on the infiltration of Escherichia coli O157:H7 into lettuce as part of the risk assessment responding to the E. coli O157:H7 outbreaks associated with leafy green produce from California. Vacuum cooling significantly increased the infiltration of E. coli O157:H7 into the lettuce tissue (2.65E+06 CFU/g) compared to the nonvacuumed condition (1.98E+05 CFU/g). A stringent surface sterilization and quadruple washing could not eliminate the internalized bacteria from lettuce. It appeared that vacuuming forcibly changed the structure of lettuce tissue such as the stomata, suggesting a possible mechanism of E. coli O157:H7 internalization. Vacuuming also caused a lower reduction rate of E. coli O157:H7 in stored lettuce leaves than that for the nonvacuumed condition.  相似文献   

5.
The influence of modified-atmosphere packaging, storage temperature, and time on survival and growth of Escherichia coli O157:H7 inoculated onto shredded lettuce, sliced cucumber, and shredded carrot was determined. Growth of psychotrophic and mesophilic microorganisms and changes in pH and sensory qualities of vegetables, as judged by subjective evaluation, were also monitored. Packaging under an atmosphere containing 3% oxygen and 97% nitrogen had no apparent effect on populations of E. coli O157:H7, psychotrophs, or mesophiles. Populations of viable E. coli O157:H7 declined on vegetables stored at 5 degrees C and increased on vegetables stored at 12 and 21 degrees C for up to 14 days. The most rapid increases in populations of E. coli O157:H7 occurred on lettuce and cucumbers stored at 21 degrees C. These results suggest that an unknown factor(s) associated with carrots may inhibit the growth of E. coli O157:H7. The reduction in pH of vegetables was correlated with initial increases in populations of E. coli O157:H7 and naturally occurring microfloras. Eventual decreases in E. coli O157:H7 in some samples, e.g., those stored at 21 degrees C, are attributed to the toxic effect of accumulated acids. Changes in visual appearance of vegetables were not influenced substantially by growth of E. coli O157:H7. The ability of E. coli O157:H7 to growth on raw salad vegetables subjected to processing and storage conditions simulating those routinely used in commercial practice has been demonstrated.  相似文献   

6.
A fed-batch, anaerobic culture system was developed to assess the behavior of Escherichia coli O157:H7 in a rumen-like environment. Fermentation medium consisted of either 50% (vol/vol) raw or sterile rumen fluid and 50% phosphate buffer. Additional rumen fluid was added twice per day, and samples were removed three times per day to simulate the exiting of digesta and microbes from the rumen environment under typical feeding regimens. With both types of medium, anaerobic and enteric bacteria reached 10(10) and 10(4) cells/ml, respectively, and were maintained at these levels for at least 5 days. When a rifampin-resistant strain of E. coli O157:H7 was inoculated into medium containing raw rumen fluid, growth did not occur. In contrast, when this strain was added to sterile rumen fluid medium, cell densities increased from 10(6) to 10(9) CFU/ml within 24 h. Most strains of E. coli O157:H7 are unable to ferment sorbitol; therefore, we assessed whether the addition of sorbitol as the only added carbohydrate could be used to competitively exclude E. coli O157:H7 from the culture system. When inoculated into raw rumen broth containing 3 g of sorbitol per liter, E. coli O157:H7 was displaced within 72 h. The addition of other competitive sugars, such as L-arabinose, trehalose, and rhamnose, to rumen medium gave similar results. However, whenever E. coli O157:H7 was grown in sterile rumen broth containing sorbitol, sorbitol-positive mutants appeared. These results suggest that a robust population of commensal ruminal microflora is required to invoke competitive exclusion of E. coli O157:H7 by the addition of "nonfermentable" sugars and that this approach may be effective as a preharvest strategy for reducing carriage of E. coli O157:H7 in the rumen.  相似文献   

7.
The survival of Salmonella enterica was recently shown to increase when the bacteria were sequestered in expelled food vacuoles (vesicles) of Tetrahymena. Because fresh produce is increasingly linked to outbreaks of enteric illness, the present investigation aimed to determine the prevalence of protozoa on spinach and lettuce and to examine their interactions with S. enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Glaucoma sp., Colpoda steinii, and Acanthamoeba palestinensis were cultured from store-bought spinach and lettuce and used in our study. A strain of Tetrahymena pyriformis previously isolated from spinach and a soil-borne Tetrahymena sp. were also used. Washed protozoa were allowed to graze on green fluorescent protein- or red fluorescent protein-labeled enteric pathogens. Significant differences in interactions among the various protist-enteric pathogen combinations were observed. Vesicles were produced by Glaucoma with all of the bacterial strains, although L. monocytogenes resulted in the smallest number per ciliate. Vesicle production was observed also during grazing of Tetrahymena on E. coli O157:H7 and S. enterica but not during grazing on L. monocytogenes, in vitro and on leaves. All vesicles contained intact fluorescing bacteria. In contrast, C. steinii and the amoeba did not produce vesicles from any of the enteric pathogens, nor were pathogens trapped within their cysts. Studies of the fate of E. coli O157:H7 in expelled vesicles revealed that by 4 h after addition of spinach extract, the bacteria multiplied and escaped the vesicles. The presence of protozoa on leafy vegetables and their sequestration of enteric bacteria in vesicles indicate that they may play an important role in the ecology of human pathogens on produce.  相似文献   

8.
The objective of this study was to determine the time period that Escherichia coli O157:H7 survives on the hides of cattle. Extensive research has been conducted and is ongoing to identify and develop novel preharvest intervention strategies to reduce the presence of E. coli O157:H7 on live cattle and subsequent transfer to processed carcasses. If a reduction of E. coli O157:H7 levels in feces can be achieved through preharvest intervention, it is not known how long it would take for such reductions to be seen on the hide. In the study presented herein, three trials were conducted to follow E. coli O157:H7 hide prevalence over time. For each trial, 36 animals were housed in individual stanchions to minimize or prevent hide contamination events. Through prevalence determination and isolate genotyping with pulsed-field gel electrophoresis, survival of E. coli O157:H7 on the hides of live cattle was determined to be short lived, with an approximate duration of 9 days or less. The results of this study suggest that any preharvest interventions that are to be administered at the end of the finishing period will achieve maximum effect in reducing E. coli O157:H7 levels on cattle hides if given 9 days before the cattle are presented for processing. However, it should be noted that interventions reducing pathogen shedding would also contribute to decreasing hide contamination through lowering the contamination load of the processing plant lairage environment, regardless of the time of application.  相似文献   

9.
Aims:  The major objective of this study was to determine the effects of low levels of Escherichia coli O157:H7 contamination on plant by monitoring the survival of the pathogen on the rhizosphere and leaf surfaces of lettuce during the growth process.
Methods and Results:  Real-time PCR and plate counts were used to quantify the survival of E. coli O157:H7 in the rhizosphere and leaf surfaces after planting. Real-time PCR assays were designed to amplify the stx 1, stx 2 and the eae genes of E. coli O157:H7. The detection limit for E. coli O157:H7 quantification by real-time PCR was 2·4 × 103 CFU g−1 of starting DNA in rhizosphere and phyllosphere samples and about 102 CFU g−1 by plate count. The time for pathogens to reach detection limits on the leaf surface by plate counts was 7 days after planting in comparison with 21 days in the rhizosphere. However, real-time PCR continued to detect stx 1, stx 2 and the eae genes throughout the experimental period.
Conclusion:  Escherichia coli O157:H7 survived throughout the growth period as was determined by real-time PCR and by subsequent enrichment and immunomagnetic separation of edible part of plants.
Significance and impact of the Study:  The potential presence of human pathogens in vegetables grown in soils contaminated with E. coli O157:H7 is a serious problem to our national food supply as the pathogen may survive on the leaf surface as they come in contact with contaminated soil during germination.  相似文献   

10.
Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of whether the genotype of the plant can also influence the extent of E. coli O157 colonization. To determine cultivar-specific effects on colonization by E. coli O157, we used 12 different cultivars of lettuce inoculated with a chromosomally lux-marked strain of E. coli O157:H7. Lettuce seedlings grown gnotobiotically in vitro did exhibit a differential cultivar-specific response to E. coli O157 colonization, although importantly there was no relationship between metabolic activity (measured as bioluminescence) and cell numbers. Metabolic activity was highest and lowest on the cultivars Vaila-winter gem and Dazzle respectively, and much higher in endophytic and tightly bound cells than in epiphytic and loosely bound cells. The cultivar effect was also evident in the rhizosphere of plants grown in compost, which suggests that cultivar-specific root exudate influences E. coli O157 activity. However, the influence of cultivar in the rhizosphere was the opposite to that in the phyllosphere, and the higher number and activity of E. coli O157 cells in the rhizosphere may be a consequence of them not being able to gain entry to the plant as effectively. If metabolic activity in the phyllosphere corresponds to a more prepared state of infectivity during human consumption, leaf internalization of E. coli O157 may pose more of a public health risk than leaf surface contamination alone.  相似文献   

11.
AIMS: The goal of this study was to determine whether any specific bacterial processes (biochemical or genetic) or cell surface moieties were required for the interaction between Escherichia coli O157:H7 and lettuce plant tissue. METHODS AND RESULTS: Escherichia coli O157:H7 and Fluospheres (fluorescent polystyrene microspheres) were used in experiments to investigate interactions with lettuce. Fluospheres were used as they are a non-biological material, of similar size and shape to a bacterial cell, but lack bacterial cell surface moieties and the ability to respond genetically. Live and glutaraldehyde-killed E. coli O157:H7 attached at levels of c. 5.8 log(10) cells per cm(2) following immersion of lettuce pieces into a suspension containing c. 8 log(10) CFU ml(-1). In a separate experiment, numbers of bacteria or Fluospheres associated with lettuce decreased by c. 1.5 log cm(-2) following a 1-min wash. Exposure times of 1 min, 1 h, or 6 h had little effect on the level of attachment for Fluospheres, and live or killed cells of E. coli O157:H7 to lettuce tissue. SIGNIFICANCE: These results indicate that bacterial processes and cell surface moieties are not required for the initial interaction of E. coli O157:H7 to lettuce plant tissue.  相似文献   

12.
The transmission of Escherichia coli O157:H7 from manure-contaminated soil and irrigation water to lettuce plants was demonstrated using laser scanning confocal microscopy, epifluorescence microscopy, and recovery of viable cells from the inner tissues of plants. E. coli O157:H7 migrated to internal locations in plant tissue and was thus protected from the action of sanitizing agents by virtue of its inaccessibility. Experiments demonstrate that E. coli O157:H7 can enter the lettuce plant through the root system and migrate throughout the edible portion of the plant.  相似文献   

13.
Studies aimed at understanding Escherichia coli O157:H7 soil survival dynamics are paramount due to their inevitable introduction into the organic vegetable production systems via animal manure-based fertilizer. Therefore, a greenhouse study was conducted to determine the survival of E. coli O157:H7 in highly controlled soil matrices subjected to two variable environmental stressors: (1) soil volumetric water content (25 or 45 % VWC), and (2) the growth of clover (planted or unplanted). During the 7-week study, molecular-based qPCR analyses revealed that E. coli O157:H7 survival was significantly lower in soils maintained at either near water-holding capacity (45 % VWC) or under clover growth. The significant reduction under clover growth was only observed when E. coli populations were determined relative to all bacteria, indicating the need to further study the competition between E. coli O157:H7 and the total bacterial community in organic soils. Given the significant effect of clover on E. coli O157:H7 survival under different moisture conditions in this greenhouse-based study, this work highlights the antimicrobial potential of clover exudates in arable soils, and future work should concentrate on their specific mechanisms of inhibition; ultimately leading to the development of crop rotations/production systems to improve pre-harvest food safety and security in minimally processed, ready-to-eat and organic production systems.  相似文献   

14.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

15.
To investigate the potential transfer of Escherichia coli O157:H7 from contaminated manure to fresh produce, lettuce seedlings were transplanted into soil fertilized with bovine manure which had been inoculated with approximately 104 CFU g−1 E. coli O157:H7. The lettuce was grown for approximately 50 days in beds in climate-controlled rooms in a greenhouse. As the bacterium was not detected in the edible parts of the lettuce, the outer leaves of the lettuce, or the lettuce roots at harvest it was concluded that transmission of E. coli O157:H7 from contaminated soil to lettuce did not occur. The pathogen persisted in the soil for at least 8 weeks after fertilizing but was not detected after 12 weeks. Indigenous E. coli was detected only sporadically on the lettuce at harvest, and enterococci were not detected at all. The numbers of enterococci declined more rapidly than those of E. coli in the soil. Pseudomonas fluorescens, which inhibited growth of E. coli O157:H7 in vitro, was isolated from the rhizosphere.  相似文献   

16.
Experimental Escherichia coli O157:H7 carriage in calves.   总被引:5,自引:0,他引:5       下载免费PDF全文
Nine weaned calves (6 to 8 weeks of age) were given 10(10) CFU of a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 by oral-gastric intubation. After an initial brief period of pyrexia in three calves and transient mild diarrhea in five calves, calves were clinically normal throughout the 13- to 27-day study. The population of E. coli O157:H7 in the faces decreased dramatically in all calves during the first 2 weeks after inoculation. Thereafter, small populations of E. coli O157:H7 persisted in all calves, where they were detected intermittently in the feces and rumen contents. While withholding food increased fecal shedding of E. coli O157:H7 by 1 to 2 log10/g in three of four calves previously shedding small populations of E. coli O157:H7, the effect of fasting on fecal shedding of E. coli O157:H7 was variable in calves shedding larger populations. At necropsy, E. coli O157:H7 was not isolated from sites outside the alimentary tract. E. coli O157:H7 was isolated from the forestomach or colon of all calves at necropsy. Greater numbers of E. coli O157:H7 were present in the gastrointestinal contents than in the corresponding mucosal sections, and there was no histologic or immunohistochemical evidence of E. coli O157:H7 adhering to the mucosa. In conclusion, under these experimental conditions, E. coli O157:H7 is not pathogenic in weaned calves, and while it does not appear to colonize mucosal surfaces for extended periods, E. coli O157:H7 persists in the contents of the rumen and colon as a source for fecal shedding.  相似文献   

17.
The enzymatic activity and viability of Escherichia coli O157:H7 in natural river water was determined by flow cytometry. River water was collected at two sites (an agricultural area and an industrial area) on the Aigawa River (Osaka, Japan). To facilitate estimation of the physiology of E. coli O157 in natural river water, bacterial cells in the water were stained with 6-carboxyfluorescein diacetate (6CFDA) and propidium iodide (PI). The cells were sorted into two populations, using a flow cytometer, based on their esterase activity. Each population was stained with E. coli O157:H7 fluorescent antibody (FA), and E. coli O157:H7 cells were observed in the esterase-active population. River water samples collected at the same points were incubated with yeast extract containing antibiotics to prevent cell division, and bacterial cells in the incubated samples were stained with PI and FA. Escherichia coli O157:H7 existed in both the viable (elongated and/or fattened) and inactive bacterial population determined by flow cytometry. These results indicate that E. coli O157:H7 may retain metabolic activity and growth potential in the natural aquatic environment.  相似文献   

18.
Long-term survival of Escherichia coli O157:H7 in soil and in the rhizosphere of many crops after fumigation is relatively unknown. One of the critical concerns with food safety is the transfer of pathogens from contaminated soil to the edible portion of the plants. Multiplex fluorogenic polymerase chain reaction was used in conjunction with plate counts to quantify the survival of E. coli O157:H7 in soil after fumigation with methyl bromide and methyl iodide in growth chamber and microcosm laboratory experiments. Plants were grown at 20 degrees C in growth chambers during the first experiment and soils were irrigated with water contaminated with E. coli O157:H7. For the second experiment, soil microcosms were used in the laboratory without plants and were inoculated with E. coli O157:H7 and spiked with the two fumigants. Primers and probes were designed to amplify and quantify the Shiga-like toxin 1 (stx1) and 2 (stx2) genes and the intimin (eae) gene of E. coli O157:H7. Both fumigants were effective in reducing pathogen concentrations in soil, and when fumigated soils were compared with nonfumigated soils, pathogen concentrations were significantly higher in the nonfumigated soils throughout the study. This resulted in a longer survival of the pathogen on the leaf surface especially in sandy soil than observed in fumigated soils. Therefore, application of fumigant may play some roles in reducing the transfer of E. coli O157:H7 from soil to leaf. Regression models showed that survival of the pathogen in the growth chamber study followed a linear model while that of the microcosm followed a curvilinear model, suggesting long-term survival of the pathogen in soil. Both experiments showed that E. coli O157:H7 can survive in the environment for a long period of time, even under harsh conditions, and the pathogen can survive in soil for more than 90 days. This provides a very significant pathway for pathogen recontamination in the environment.  相似文献   

19.
Previously, we produced two groups of gnotobiotic mice, GB-3 and GB-4, which showed different responses to Escherichia coli O157:H7 challenge. E. coli O157:H7 was eliminated from GB-3, whereas GB-4 mice became carriers. It has been reported that the lag time of E. coli O157:H7 growth in 50% GB-3 caecal suspension was extended when compared to GB-4 caecal suspension. In this study, competition for nutrients between intestinal microbiota of GB-3 and GB-4 mice and E. coli O157:H7 was examined. Amino acid concentrations in the caecal contents of GB-3 and GB-4 differed, especially the concentration of proline. The supplementation of proline into GB-3 caecal suspension decreased the lag time of E. coli O157:H7 growth in vitro. When E. coli O157:H7 was cultured with each of the strains used to produce GB-3 mice in vitro, 2 strains of E. coli (proline consumers) out of 5 enterobacteriaceae strains strongly suppressed E. coli O157:H7 growth and the suppression was attenuated by the addition of proline into the medium. These results indicate that competition for proline with indigenous E. coli affected the growth of E. coli O157:H7 in vivo and may contribute to E. coli O157:H7 elimination from the intestine.  相似文献   

20.
In this paper, we describe a novel method for detecting Escherichia coli (E. coli) O157:H7 by using a quartz crystal microbalance (QCM) immunosensor based on beacon immunomagnetic nanoparticles (BIMPs), streptavidin-gold, and growth solution. E. coli O157-BIMPs were magnetic nanoparticles loaded with polyclonal anti-E. coli O157:H7 antibody (target antibody, T-Ab) and biotin-IgG (beacon antibody, B-Ab) at an optimized ratio of 1:60 (T-Ab:B-Ab). E. coli O157:H7 was captured and separated by E. coli O157-BIMPs in a sample, and the streptavidin-gold was subsequently conjugated to E. coli O157-BIMPs by using a biotin-avidin system. Finally, the gold particles on E. coli O157-BIMPs were enlarged in growth solution, and the compounds containing E. coli O157:H7, E. coli O157-BIMPs, and enlarged gold particles were collected using a magnetic plate. The QCM immunosensor was fabricated with protein A from Staphylococcus aureus and monoclonal anti-E. coli O157:H7 antibody. The compounds decreased the immunosensor's resonant frequency. E. coli O157-BIMPs and enlarged gold particles were used as "mass enhancers" to amplify the frequency change. The frequency shift was correlated to the bacterial concentration. The detection limit was 23 CFU/ml in phosphate-buffered saline and 53 CFU/ml in milk. This method could successfully detect E. coli O157:H7 with high specificity and stability. The entire procedure for the detection of E. coli O157:H7 took only 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号