首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus . In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30–100 amino acids and an amino terminal secretion signal encompassing the first 5–20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.  相似文献   

3.
4.
Salmonella harbors two type III secretion systems, T3SS1 and T3SS2, encoded on the pathogenicity islands SPI1 and SPI2, respectively. Several effector proteins are secreted through these systems into the eukaryotic host cells. PipB2 is a T3SS2 effector that contributes to the modulation of kinesin-1 motor complex activity. Here, we show that PipB2 is also a substrate of T3SS1. This result was obtained infecting human epithelial HeLa cells for 2 h and was confirmed in murine RAW264.7 macrophages, and rat NRK fibroblasts. Analysis at different time points after infection revealed that translocation of PipB2 is T3SS1-dependent in epithelial cells throughout the infection. In contrast, translocation into macrophages is T3SS1-dependent during invasion but T3SS2-dependent at later time points. The N-terminal 10 amino acid residues contain the signal necessary for translocation through both systems. These results confirm the functional overlap between these virulence-related secretion systems and suggest a new role for the effector PipB2.  相似文献   

5.
To determine virulence-related genes in uropathogenic Escherichia coli (UPEC) showing invasiveness to T-24 bladder cancer cells, genomic subtractive hybridization was performed between a highly invasive and a less invasive strain. Forty-nine DNA fragments were isolated from the invasive strain. One of them showed homology with Salmonella invA gene. By chromosomal walking of the strain, a type III secretion system that has been described in E. coli O157:H7 was identified on the genome of the invasive strains. Three strains out of 100 UPEC isolates had a type III secretion system inserted at 64 min of the chromosome, corresponding to E. coli K-12 MG1655. This finding suggested that the type III secretion system could play a part in uropathogenicity of UPEC.  相似文献   

6.
为开发新型重组减毒鼠伤寒沙门菌口服活疫苗载体,本研究以pYA3493质粒为基础,用鼠伤寒沙门菌sopE_(Nt100)基因及其启动子替代原有的P_(trc)启动子,构建沙门菌三型分泌表达载体pYA-sopE_(Nt100);再将质粒pYA-sopE_(Nt100)电转入沙门菌ΔcrpΔasd SL1344,构建减毒鼠伤寒沙门菌ΔcrpΔasd SL1344(p YA-sop E_(Nt100))三型分泌表达系统,研究其生物学特性,进一步将报告基因egfp克隆入sop E基因下游,构建重组菌株ΔcrpΔasd SL1344(p YA-sop E_(Nt100)-egfp),感染Vero细胞,用Western blotting分析该系统递呈外源抗原的能力。PCR、酶切及测序结果表明,减毒鼠伤寒沙门菌ΔcrpΔasd SL1344(p YA-sop E_(Nt100))三型分泌表达系统构建成功;生物学特性鉴定结果表明,其血清型与亲本株Δcrp SL1344及野生株SL1344保持一致;其生化特性与亲本株基本相近,但与野毒株相比发生明显变化;生长速度也更为缓慢;重组菌株ΔcrpΔasd SL1344(p YA-sop E_(Nt100))的LD50较野生株SL1344降低了7.0×104倍;Western blotting结果发现,重组菌培养上清中能检测到Sop E_(Nt100)-egfp融合蛋白(37 k Da);重组菌株感染Vero细胞后,可以同时检测到Sop E_(Nt100)-egfp融合蛋白(37 k Da)和EGFP蛋白(27 k Da)。以上结果证实,本研究成功构建了新型减毒鼠伤寒沙门菌ΔcrpΔasd(p YA-sop E_(Nt100))三型分泌表达系统,其能够有效递呈外源抗原,该重组菌株有潜力作为安全、稳定、高效表达外源基因的口服重组活疫苗载体。  相似文献   

7.
8.

Background

Type III secretion systems (TTSS) are employed by numerous pathogenic and symbiotic bacteria to inject a cocktail of different “effector proteins” into host cells. These effectors subvert host cell signaling to establish symbiosis or disease.

Methodology/Principal Findings

We have studied the injection of SipA and SptP, two effector proteins of the invasion-associated Salmonella type III secretion system (TTSS-1). SipA and SptP trigger different host cell responses. SipA contributes to triggering actin rearrangements and invasion while SptP reverses the actin rearrangements after the invasion has been completed. Nevertheless, SipA and SptP were both pre-formed and stored in the bacterial cytosol before host cell encounter. By time lapse microscopy, we observed that SipA was injected earlier than SptP. Computer modeling revealed that two assumptions were sufficient to explain this injection hierarchy: a large number of SipA and SptP molecules compete for transport via a limiting number of TTSS; and the TTSS recognize SipA more efficiently than SptP.

Conclusions/Significance

This novel mechanism of hierarchical effector protein injection may serve to avoid functional interference between SipA and SptP. An injection hierarchy of this type may be of general importance, allowing bacteria to precisely time the host cell manipulation by type III effectors.  相似文献   

9.
Bacterial type III secretion systems have significant potential to be harnessed for beneficial purposes including vaccine development, anti-cancer therapies, strategies to counteract harmful bacteria-host interactions, and evolutionary studies. The ability to clone and manipulate type III secretion systems would allow researchers to perform novel experiments that would progress the biotechnological development of the potentially positive uses of these systems. Here, we report the cloning of the entire Salmonella pathogenicity island 1 (SPI-1) type III secretion system on a single DNA fragment that is contained on a self-transmissible plasmid vector for convenient transfer to alternate hosts. We demonstrate that the cloned SPI-1 type III system is functional for secretion and translocation via complementation of an S. typhimurium Delta SPI-1 strain. We also present a convenient method to construct mutations and epitope fusions in the cloned type III genes and demonstrate that the engineered substrate protein fusions are recognized by the cloned type III system. We transferred the cloned SPI-1 type III system into bacterial strains of different genera and found that there is a SPI-1 gene expression defect in these strains. The results describe a novel strategy for cloning and manipulation of bacterial secretion system gene clusters and provide a foundation for future studies to develop the beneficial uses of cloned type III secretion systems.  相似文献   

10.
11.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

12.
Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQ(L)) composed of 322 amino acids and a shorter protein (SsaQ(S)) comprising the C-terminal 106 residues of SsaQ(L). SsaQ(L) is essential for SPI-2 T3SS function. Loss of SsaQ(S) impairs the function of the T3SS both ex vivo and in vivo. SsaQ(S) binds to its corresponding region within SsaQ(L) and stabilizes the larger protein. Therefore, SsaQ(L) function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.  相似文献   

13.
Replication of Salmonella typhimurium in host cells depends in part on the action of the Salmonella Pathogenicity Island 2 (SPI-2) type III secretion system (TTSS), which translocates bacterial effector proteins across the membrane of the Salmonella-containing vacuole (SCV). We have shown previously that one activity of the SPI-2 TTSS is the assembly of a coat of F-actin in the vicinity of bacterial microcolonies. To identify proteins involved in SPI-2 dependent actin polymerization, we tested strains carrying mutations in each of several genes whose products are proposed to be secreted through the SPI-2 TTSS, for their ability to assemble F-actin around intracellular bacteria. We found that strains carrying mutations in either sseB, sseC, sseD or spiC were deficient in actin assembly. The phenotypes of the sseB-, sseC- and sseD- mutants can be attributed to their requirement for translocation of SPI-2 effectors. SpiC was investigated further in view of its proposed role as an effector. Transient expression of a myc::SpiC fusion protein in Hela cells did not induce any significant alterations to the host cell cytoskeleton, and failed to restore actin polymerization around intracellular spiC- mutant bacteria. However, the same protein did complement the mutant phenotype when expressed from a plasmid within bacteria. Furthermore, spiC was found to be required for SPI-2 mediated secretion of SseB, SseC and SseD in vitro. An antibody against SpiC detected the protein on immunoblots from total cell lysates of S. typhimurium expressing SpiC from a plasmid, but it was not detected in secreted fractions after exposure of cells to conditions that result in secretion of other SPI-2 effector proteins. Investigation of the trafficking of SCVs containing a spiC- mutant in macrophages revealed only a low level of association with the lysosomal marker cathepsin D, similar to that of wild-type bacteria. Together, these results show that SpiC is involved in the process of SPI-2 secretion and indicate that phenotypes associated with a spiC- mutant are caused by the inability of this strain to translocate effector proteins, thus calling for further investigation into the function(s) of this protein.  相似文献   

14.
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.  相似文献   

15.
16.
We have devised a colorimetric method that monitors secretion of effector proteins into host cytoplasm through the bacterial type III secretion machinery. Here we used constructs of effectors fused with Bordetella adenylate cyclase as a reporter, but evaluated the effector translocation by quantifying cell viability, rather than by measuring the intracellular cAMP concentration. This is based on our findings that cells infected by a secretion-competent bacterium expressing the fusion protein lost their viability under our experimental conditions. Cell death was quantified using commercially available reagents and basic research equipment. An observation that cell death was potentiated when the infected cells were treated with 2-deoxyglucose and sodium azide suggests that the depletion of intracellular ATP is partly involved in the process. Using enteropathogenic Escherichia coli, we demonstrated that the method was applicable to at least three effectors of bacteria, Tir, EspF, and Map, and was useful for studying a secretion signal sequence for Tir. This technically simple and inexpensive method is a good alternative to the existing procedure for studying the mechanism by which effectors are secreted through the type III secretion system in a high-throughput format.  相似文献   

17.
18.
The potential of an attenuated Salmonella enterica serovar Typhimurium strain as a prophylactic anti-tumor vaccine against the murine fibrosarcoma WEHI 164 was evaluated. Tumor cells were transfected with the DNA sequence encoding the MHC class I-restricted peptide p60(217-225) from Listeria monocytogenes. BALB/c mice received a single orogastric immunization with Salmonella that translocates a chimeric p60 protein via its type III secretion system. Mice were subsequently challenged subcutaneously with p60(217-225)-expressing WEHI cells. In vivo protection studies revealed that 80% of these mice remained free of the fibrosarcoma after challenge, whereas all animals of the non-vaccinated control group did develop tumor growth. In further experiments, the distribution of tetramer-positive p60(217-225)-specific effector and memory CD8 T cells after Salmonella-based immunization and tumor application was analyzed. Costaining with CD62L and CD127 revealed a predominance of p60-specific central memory and effector memory CD8 T cells in spleens, whereas in blood samples the majority of p60-specific lymphocytes belonged to effector and effector memory CD8 T cell subsets. This is the first report demonstrating that a bacterial type III secretion system can be used for heterologous antigen delivery to induce cytotoxic effector and memory CD8 T cell responses resulting in an efficient prevention of tumor growth.  相似文献   

19.
Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1(+) phenotype) or not (TTSS-1(-) phenotype). Here, we studied in vitro the TTSS-1(+) phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1(+) phenotype grew slower than cells of the TTSS-1(-) phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1(+) subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1(-) cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号