首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MRI images of pulmonary blood flow using arterial spin labeling (ASL) measure the delivery of magnetically tagged blood to an image plane during one systolic ejection period. However, the method potentially suffers from two problems, each of which may depend on the imaging plane location: 1) the inversion plane is thicker than the imaging plane, resulting in a gap that blood must cross to be detected in the image; and 2) ASL includes signal contributions from tagged blood in conduit vessels (arterial and venous). By using an in silico model of the pulmonary circulation we found the gap reduced the ASL signal to 64-74% of that in the absence of a gap in the sagittal plane and 53-84% in the coronal. The contribution of the conduit vessels varied markedly as a function of image plane ranging from ~90% of the overall signal in image planes that encompass the central hilar vessels to <20% in peripheral image planes. A threshold cutoff removing voxels with intensities >35% of maximum reduced the conduit vessel contribution to the total ASL signal to ~20% on average; however, planes with large contributions from conduit vessels underestimate acinar flow due to a high proportion of in-plane flow, making ASL measurements of perfusion impractical. In other image planes, perfusion dominated the resulting ASL images with good agreement between ASL and acinar flow. Similarly, heterogeneity of the ASL signal as measured by relative dispersion is a reliable measure of heterogeneity of the acinar flow distribution in the same image planes.  相似文献   

2.
In prior studies in man, we have demonstrated that pressure-induced hyperemia lasts for prolonged periods as compared to the short-term hyperemia created by proximal arterial occlusion. We have analyzed this phenomenon in our well-studied rat model of skin blood flow. Skin blood flow was measured using laser Doppler techniques in Wistar Kyoto rats at the back, a nutritively perfused site, and at the plantar surface of the paw, where arteriovenous anastomotic perfusion dominates. A customized pressure feedback control device was used to vary applied pressures. At the back, pressures in excess of 80 mmHg resulted in occlusion, whereas at the paw 150 mmHg was required. The peak hyperemic flow after release of pressure was comparable to that elicited by proximal arterial occlusion with a blood pressure cuff. However, the post pressure hyperemia peak descended to a plateau value, which was 50-100% greater than baseline and continued for up to 20 min while the peak following proximal arterial occlusion returned to baseline within 4 min. At the back, post pressure hyperemia reached a maximum after application of 100 mmHg pressure. The application of higher pressures than required for occlusion produced no greater hyperemic response. At the paw, maximum post pressure hyperemia occurred at 100 mmHg, although this pressure level was not totally occlusive. Higher pressures resulted in no greater hyperemia. At the back, 10 min of occlusion produced a maximal peak value whereas 1 min was sufficient at the paw. The application of pressure to a heated probe with subsequent release, produced a hyperemic response. Normalized to baseline blood flow, there was no difference between the hyperemic responses at basal skin temperature and at 44 degrees C. There is a prolonged hyperemic response following local pressure occlusion compared to a much shorter period following proximal ischemic occlusion. One can presume two different mechanisms, one related to ischemia and the other a separate pressure related phenomenon. The thermal vasodilatory response is additive, not synergistic with the post pressure hyperemia we have demonstrated. This finding suggests that different mechanisms are involved in thermal vasodilation and post pressure hyperemia.  相似文献   

3.
Cardiovascular indices were analyzed in young healthy males exposed to normobaric hypoxia (breathing a gas mixture containing 10% O2 for 16 min). There was a marked variation in individual responses. A linear relationship was observed between the individual blood oxygen saturation at the end of exposure and the baseline muscle blood flow (MBF). Moreover, blood oxygen saturation decreased in subjects with an initially high forearm MBF and remained unchanged or even slightly increased in subjects with a low forearm MBF. After hypoxic exposure (10–15 min), the MBF continued to decrease, venous capacity increased, and postocclusion hyperemic response decreased. It is suggested that hypoxic exposure activates the neuroreflex mechanisms regulating the peripheral blood flow and that the peripheral vascular response to acute hypoxia depends largely on the baseline blood flow in skeletal muscles.  相似文献   

4.
The purpose of this study was to determine whether chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to Centers for Disease Control criteria (n = 19) were compared with normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle with (31)P-magnetic resonance spectroscopy. Muscle oxygen saturation and blood volume were measured using near-infrared spectroscopy. CFS and controls were not different in hyperemic blood flow or phosphocreatine recovery rate. Cuff pressures of 50, 60, 70, 80, and 90 mmHg were used to partially restrict blood flow during recovery. All pressures reduced blood flow and oxidative metabolism, with 90 mmHg reducing blood flow by 46% and oxidative metabolism by 30.7% in CFS patients. Hyperemic blood flow during partial cuff occlusion was significantly reduced in CFS patients (P < 0.01), and recovery of oxygen saturation was slower (P < 0.05). No differences were seen in the amount of reduction in metabolism with partially reduced blood flow. In conclusion, CFS patients showed evidence of reduced hyperemic flow and reduced oxygen delivery but no evidence that this impaired muscle metabolism. Thus CFS patients might have altered control of blood flow, but this is unlikely to influence muscle metabolism. Furthermore, abnormalities in muscle metabolism do not appear to be responsible for the CFS symptoms.  相似文献   

5.
The purpose of this investigation was to examine the effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion by using spontaneously perfused canine gastrocnemii in situ. Simultaneous pulsatile blood pressures were measured by means of transducers placed in the popliteal artery and vein, and pulsatile flow was measured with a flow-through-type transit-time ultrasound probe placed in the venous return line. Two series of experiments were performed. In series 1, maximal vasodilation of the muscles' vascular beds was elicited by infusing a normal saline solution containing adenosine (29.3 mg/min) and sodium nitroprusside (180 microg/min) for 15 s and then simultaneously occluding both the popliteal artery and vein for 5 min. The release of occlusion initiated a maximal hyperemic response, during which time four tetanic contractions were induced with supramaximal voltage (6-8 V, 0.2-ms stimuli for 200-ms duration at 50 Hz, 1/s). In series 2, the muscles were stimulated for 3 min before the muscle contractions were stopped for a period of 3 s; stimulation was then resumed. The results of series 1 indicate that, although contractions lowered venous pressure, muscle blood flow was significantly reduced from 2,056 +/- 246 to 1,738 +/- 225 ml x kg(-1) x min(-1) when contractions were initiated and then increased significantly to 1,925 +/- 225 ml x kg(-1) x min(-1) during the first 5 s after contractions were stopped. In series 2, blood flow after 3 min of contractions averaged 1,454 +/- 149 ml x kg(-1) x min(-1). Stopping the contractions for 3 s caused blood flow to increase significantly to 1,874 +/- 172 ml x kg(-1) x min(-1); blood flow declined significantly to 1,458 +/- 139 ml x kg(-1) x min(-1) when contractions were resumed. We conclude that the mechanical action of rhythmic, synchronous, maximal isometric tetanic skeletal muscle contractions inhibits peak muscle perfusion during maximal and near-maximal vasodilation of the muscle's vascular bed. This argues against a primary role for the muscle pump in achieving peak skeletal muscle blood flow.  相似文献   

6.
These experiments were designed to estimate the involvement of the sympathetic innervation in regulation of hindlimb muscle blood flow distribution among and within muscles during submaximal locomotory exercise in rats. Blood flows to 32 hindlimb muscles and 13 other selected tissues were measured using the radiolabeled microsphere technique, before exercise and at 0.5, 2, 5, and 15 min of treadmill exercise at 15 m/min. The two groups of rats studied were 1) intact control, and 2) acutely sympathectomized (hindlimb sympathectomy accomplished by bilateral section of the lumbar sympathetic chain and its connections to the spinal cord at L2-L3). There were no differences in total hindlimb muscle blood flow among the two groups during preexercise or at 30 s or 2 min of exercise. However, flow was higher in eight individual muscles at 2 min of exercise in the sympathectomized rats. At 5 and 15 min of exercise there was higher total hindlimb muscle blood flow in the denervated group compared with control. These differences were also present in many individual muscles. Our results suggest that 1) sympathetic nerves do not exert a net influence on the initial elevations in muscle blood flow at the beginning of exercise, 2) sympathetic nerves are involved in regulating muscle blood flow during steady-state submaximal exercise in conscious rats, and 3) these changes are seen in muscles of all fiber types.  相似文献   

7.
The importance of adenosine in controlling the magnitude and distribution of blood flow among and within skeletal muscles in rats during slow locomotor exercise was tested by systemic infusion of adenosine deaminase (ADA). Blood flows were measured using labeled microspheres before exercise and at 0.5, 15, and 30 min of fast treadmill walking at 15 m/min. An initial infusion of ADA (1,000 U/kg) was given 30 min before the first blood flow measurement and a second injection (1,000 U/kg) was given 5 min into exercise. These infusions maintained ADA activity above 5 U/ml blood throughout the experimental period. This plasma concentration of ADA was shown to be sufficient to result in a 64% decrease in muscle adenosine levels during ischemic contraction. Blood flows were measured in all of the muscles of the hindlimb (28 samples) and in various nonmuscular tissues in ADA-treated and control rats. Preexercise blood flows were primarily directed to slow-twitch muscles and exercise blood flows were highest in muscles with fast-twitch oxidative fibers. ADA treatment did not reduce total muscle blood flow or exercise blood flows in any of the muscles at any time. These findings do not support the hypothesis that adenosine plays an essential role in controlling muscle blood flow in skeletal muscles during normal locomotor activity.  相似文献   

8.

Introduction

Women with fibromyalgia (FM) have symptoms of increased muscular fatigue and reduced exercise tolerance, which may be associated with alterations in muscle microcirculation and oxygen metabolism. This study used near-infrared diffuse optical spectroscopies to noninvasively evaluate muscle blood flow, blood oxygenation and oxygen metabolism during leg fatiguing exercise and during arm arterial cuff occlusion in post-menopausal women with and without FM.

Methods

Fourteen women with FM and twenty-three well-matched healthy controls participated in this study. For the fatiguing exercise protocol, the subject was instructed to perform 6 sets of 12 isometric contractions of knee extensor muscles with intensity steadily increasing from 20 to 70% maximal voluntary isometric contraction (MVIC). For the cuff occlusion protocol, forearm arterial blood flow was occluded via a tourniquet on the upper arm for 3 minutes. Leg or arm muscle hemodynamics, including relative blood flow (rBF), oxy- and deoxy-hemoglobin concentration ([HbO2] and [Hb]), total hemoglobin concentration (THC) and blood oxygen saturation (StO2), were continuously monitored throughout protocols using a custom-built hybrid diffuse optical instrument that combined a commercial near-infrared oximeter for tissue oxygenation measurements and a custom-designed diffuse correlation spectroscopy (DCS) flowmeter for tissue blood flow measurements. Relative oxygen extraction fraction (rOEF) and oxygen consumption rate (rVO2) were calculated from the measured blood flow and oxygenation data. Post-manipulation (fatiguing exercise or cuff occlusion) recovery in muscle hemodynamics was characterized by the recovery half-time, a time interval from the end of manipulation to the time that tissue hemodynamics reached a half-maximal value.

Results

Subjects with FM had similar hemodynamic and metabolic response/recovery patterns as healthy controls during exercise and during arterial occlusion. However, tissue rOEF during exercise in subjects with FM was significantly lower than in healthy controls, and the half-times of oxygenation recovery (Δ[HbO2] and Δ[Hb]) were significantly longer following fatiguing exercise and cuff occlusion.

Conclusions

Our results suggest an alteration of muscle oxygen utilization in the FM population. This study demonstrates the potential of using combined diffuse optical spectroscopies (i.e., NIRS/DCS) to comprehensively evaluate tissue oxygen and flow kinetics in skeletal muscle.  相似文献   

9.
Sjögren’s syndrome (SS) is characterized by hypofunction of the salivary and lacrimal glands. The salivary function is largely dependent upon the blood supply in the glands. However, the diseased states of the gland perfusion are not well understood. The arterial spin labeling (ASL) technique allows noninvasive quantitative assessment of tissue perfusion without the need for contrast agent. Here, we prospectively compared the perfusion properties of the parotid glands between patients with SS and those with healthy glands using ASL MR imaging. We analyzed salivary blood flow (SBF) kinetics of 22 healthy parotid glands from 11 volunteers and 28 parotid glands from 14 SS patients using 3T pseudo-continuous ASL imaging. SBF was determined in resting state (base SBF) and at 3 sequential segments after gustatory stimulation. SBF kinetic profiles were characterized by base SBF level, increment ratio at the SBF peak, and the differences in segments where the peak appeared (SBF types). Base SBFs of the SS glands were significantly higher than those of healthy glands (59.2 ± 22.8 vs. 46.3 ± 9.0 mL/min/100 g, p = 0.01). SBF kinetic profiles of the SS glands also exhibited significantly later SBF peaks (p < 0.001) and higher SBF increment ratios (74 ± 49% vs. 47 ± 39%, p = 0.04) than the healthy glands. The best SBF criterion (= 51.2 mL/min/100 mg) differentiated between control subjects and SS patients with 71% sensitivity and 82% specificity. Taken together, these results showed that the SS parotid glands were mostly hyperemic and the SS gland responses to gustatory stimulation were stronger and more prolonged than those of the healthy glands. The ASL may be a promising technique for assessing the diseased salivary gland vascularization of SS patients.  相似文献   

10.
Individuals with chronic stroke have reduced perfusion of the paretic lower limb at rest; however, the hyperemic response to graded muscle contractions in this patient population has not been examined. This study quantified blood flow to the paretic and non-paretic lower limbs of subjects with chronic stroke after submaximal contractions of the knee extensor muscles and correlated those measures with limb function and activity. Ten subjects with chronic stroke and ten controls had blood flow through the superficial femoral artery quantified with ultrasonography before and immediately after 10 second contractions of the knee extensor muscles at 20, 40, 60, and 80% of the maximal voluntary contraction (MVC) of the test limb. Blood flow to the paretic and non-paretic limb of stroke subjects was significantly reduced at all load levels compared to control subjects even after normalization to lean muscle mass. Of variables measured, increased blood flow after an 80% MVC was the single best predictor of paretic limb strength, the symmetry of strength between the paretic and non-paretic limbs, coordination of the paretic limb, and physical activity. The impaired hemodynamic response to high intensity contractions was a better predictor of lower limb function than resting perfusion measures. Stroke-dependent weakness and atrophy of the paretic limb do not explain the reduced hyperemic response to muscle contraction alone as the response is similarly reduced in the non-paretic limb when compared to controls. These data may suggest a role for perfusion therapies to optimize rehabilitation post stroke.  相似文献   

11.
Perfusion and oxygenation are critical parameters of muscle metabolism in health and disease. They have been both the target of many studies, in particular using near‐infrared spectroscopy (NIRS). However, difficulties with quantifying NIRS signals have limited a wide dissemination of the method to the clinics. Our aim was to investigate whether clinical multispectral optoacoustic tomography (MSOT) could enable the label‐free imaging of muscle perfusion and oxygenation under clinically relevant challenges: the arterial and venous occlusion. We employed a hybrid clinical MSOT/ultrasound system equipped with a hand‐held scanning probe to visualize hemodynamic and oxygenation changes in skeletal muscle under arterial and venous occlusions. Four (N = 4) healthy volunteers were scanned over the forearm for both 3‐minute occlusion challenges. MSOT‐recorded pathophysiologically expected results during tests of disturbed blood flow with high resolution and without the need for contrast agents. During arterial occlusion, MSOT‐extracted Hb‐values showed an increase, while HbO2‐ and total blood volume (TBV)‐values remained roughly steady, followed by a discrete increase during the hyperemic period after cuff deflation. During venous occlusion, results showed a clear increase in intramuscular HbO2, Hb and TBV within the segmented muscle area. MSOT was found to be capable of label‐free non‐invasive imaging of muscle hemodynamics and oxygenation under arterial and venous occlusion. We introduce herein MSOT as a novel modality for the assessment of vascular disorders characterized by disturbed blood flow, such as acute limb ischemia and venous thrombosis.  相似文献   

12.
To utilize the rat spinotrapezius muscle as a model to investigate the microcirculatory consequences of exercise training, it is necessary to design an exercise protocol that recruits this muscle. There is evidence that the spinotrapezius is derecruited during standard treadmill exercise protocols performed on the uphill treadmill (i.e., 6 degrees incline). This investigation tested the hypothesis that downhill running would effectively recruit the spinotrapezius muscle as assessed by the presence of an exercise hyperemia response. We used radioactive 15-microm microspheres to determine blood flows in the spinotrapezius and selected hindlimb muscles of female Sprague-Dawley rats at rest and during downhill (i.e., -14 degrees incline; 331 +/- 5 g body wt, n = 7) and level (i.e., 0 degrees incline; 320 +/- 11 g body wt, n = 5) running at 30 m/min. Both level and downhill exercise increased blood flow to all hindlimb muscles (P < 0.01). However, in marked contrast to the absence of a hyperemic response to level running, blood flow to the spinotrapezius muscle increased from 26 +/- 6 ml.min(-1).100 g(-1) at rest to 69 +/- 8 ml.min(-1).100 g(-1) during downhill running (P < 0.01). These findings indicate that downhill running represents an exercise paradigm that recruits the spinotrapezius muscle and thereby constitutes a tenable physiological model for investigating the adaptations induced by exercise training (i.e., the mechanisms of altered microcirculatory control by transmission light microscopy).  相似文献   

13.
We previously reported that low doses of d-tubocurarine attenuated glycogen loss in red muscles of rats during treadmill walking but that the initial hyperemia in the muscles was normal. The present studies were performed to 1) determine with electromyography (EMG) whether red muscle fiber activity is reduced in walking, curarized rats and 2) study muscle blood flow and glycogen loss during running with different doses of curare (dose response). At 0.5 min of treadmill walking (15 m/min), integrated EMG in vastus intermedius (VI) muscle was reduced by an average of 18% in curarized (60 micrograms/kg) rats, although blood flow (measured with microspheres) was the same as in saline control rats. Comparison of blood flows and glycogen loss in quadriceps muscles at 1 min of treadmill running (30 m/min) with different curare doses (20-60 micrograms/kg) demonstrated that red muscle glycogen loss was inversely related to curare dose but that blood flows in the same muscles were unaffected by curare. These findings provide support for our previous conclusion that at the initiation of low to moderate treadmill exercise, red muscle blood flow is not proportional to the activity or metabolism of the muscle fibers.  相似文献   

14.
Respiratory muscle blood flow and organ blood flow during endotoxic shock were studied in spontaneously breathing dogs (SB, n = 6) and mechanically ventilated dogs (MV, n = 5) with radiolabeled microspheres. Shock was produced by a 5-min intravenous injection of Escherichia coli endotoxin (0.55:B5, Difco, 10 mg/kg) suspended in saline. Mean arterial blood pressure and cardiac output in the SB group dropped to 59 and 45% of control values, respectively. There was a similar reduction in arterial blood pressure and cardiac output in the MV group. Total respiratory muscle blood flow in the SB group increased significantly from the control value of 51 +/- 4 ml/min (mean +/- SE) to 101 +/- 22 ml/min at 60 min of shock. In the MV group, respiratory muscle perfusion fell from control values of 43 +/- 12 ml/min to 25 +/- 3 ml/min at 60 min of shock. In the SB group, 8.8% of the cardiac output was received by the respiratory muscle during shock in comparison with 1.9% in the MV group. In both groups of dogs, blood flow to most organs was compromised during shock; however, blood flow to the brain, gut, and skeletal muscles was higher in the MV group than in the SB group. Thus by mechanical ventilation a fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during endotoxic shock.  相似文献   

15.
Previous studies have shown increased fatigue in paralyzed muscle of spinal cord-injured (SCI) patients (Castro M, Apple D Jr, Hillegass E, and Dudley GA. Eur J Appl Physiol 80: 373-378, 1999; Gerrits H, Hopman MTE, Sargeant A, and de Haan A. Clin Physiol 21: 105-113, 2001). Our purpose was to determine whether the increased muscle fatigue could be due to a delayed rise in blood flow at the onset of exercise in SCI individuals. Isometric electrical stimulation was used to induce fatigue in the quadriceps femoris muscle of seven male, chronic (>1 yr postinjury), complete (American Spinal Injury Association, category A) SCI subjects. Cuff occlusion was used to elevate blood flow before electrical stimulation, and the magnitude of fatigue was compared with a control condition of electrical stimulation without prior cuff occlusion. Blood flow was measured in the femoral artery by Doppler ultrasound. Prior cuff occlusion increased blood flow in the first 30 s of stimulation compared with the No-Cuff condition (1,350 vs. 680 ml/min, respectively; P < 0.001), although blood flow at the end of stimulation was the same between conditions (1,260 +/- 140 vs. 1,160 +/- 370 ml/min, Cuff and No-Cuff condition, respectively; P = 0.511). Muscle fatigue was not significantly different between prior cuff occlusion and the control condition (32 +/- 13 vs. 35 +/- 10%; P = 0.670). In conclusion, increased muscle fatigue in SCI individuals is not associated with the prolonged time for blood flow to increase at the onset of exercise.  相似文献   

16.
The purpose of this study was to assess the relationship between aerobic exercise training and brachial artery flow-mediated dilation (FMD) in healthy subjects. Healthy controls (HC) and aerobically-trained (T) subjects were studied with high-resolution vascular ultrasound at baseline, and during a 5-minute period of hyperemia following forearm cuff occlusion. Training was defined by self-reported participation in recreational or competitive run training. Forearm cuff occlusion was held at 200 mm Hg for 5 minutes. At baseline, both brachial artery flow and diameter were greater in T than in HC (p < 0.05). Resting heart rate was lower in T than in HC (p < 0.05). Peak hyperemic flow (15 seconds postocclusion) was significantly greater in T than in HC (HC; 539 +/- 75 ml x min(-1) vs. T; 832 +/- 103 ml x min(-1), p < 0.05) and correlated well with V(.-)O2peak (r = 0.67, p = 0.008). Flow-mediated dilation was significantly greater in T vs. HC throughout the 5-minute postocclusion phase (p < 0.05). Maximal brachial artery dilation was greater in T than in HC (HC; 3 +/- 1% of baseline vs. T; 8 +/- 3% of baseline; p < 0.05) and moderately correlated with V(.-)O2peak (r = 0.55, p < 0.05). These data suggest that the greater FMD observed in trained subjects may be due, in part, to an augmentation of peak hyperemic flow.  相似文献   

17.
The muscle pump theory holds that contraction aids muscle perfusion by emptying the venous circulation, which lowers venous pressure during relaxation and increases the pressure gradient across the muscle. We reasoned that the influence of a reduction in venous pressure could be determined after maximal pharmacological vasodilation, in which the changes in vascular tone would be minimized. Mongrel dogs (n = 7), instrumented for measurement of hindlimb blood flow, ran on a treadmill during continuous intra-arterial infusion of saline or adenosine (15-35 mg/min). Adenosine infusion was initiated at rest to achieve the highest blood flow possible. Peak hindlimb blood flow during exercise increased from baseline by 438 +/- 34 ml/min under saline conditions but decreased by 27 +/- 18 ml/min during adenosine infusion. The absence of an increase in blood flow in the vasodilated limb indicates that any change in venous pressure elicited by the muscle pump was not adequate to elevate hindlimb blood flow. The implication of this finding is that the hyperemic response to exercise is primarily attributable to vasodilation in the skeletal muscle vasculature.  相似文献   

18.
Effect of hindlimb unweighting on tissue blood flow in the rat.   总被引:5,自引:0,他引:5  
The purpose of this study was to characterize the distribution of blood flow in the rat during hindlimb unweighting (HU) and post-HU standing and exercise and examine whether the previously reported (Witzmann et al., J. Appl. Physiol. 54: 1242-1248, 1983) elevation in anaerobic metabolism observed with contractile activity in the atrophied soleus muscle was caused by a reduced hindlimb blood flow. After either 15 days of HU or cage control, blood flow was measured with radioactive microspheres during unweighting, normal standing, and running on a treadmill (15 m/min). In another group of control and experimental animals, blood flow was measured during preexercise (PE) treadmill standing and treadmill running (15 m/min). Soleus muscle blood flow was not different between groups during unweighting, PE standing, and running at 15 m/min. Chronic unweighting resulted in the tendency for greater blood flow to muscles composed of predominantly fast-twitch glycolytic fibers. With exercise, blood flow to visceral organs was reduced compared with PE values in the control rats, whereas flow to visceral organs in 15-day HU animals was unaltered by exercise. These higher flows to the viscera and to muscles composed of predominantly fast-twitch glycolytic fibers suggest an apparent reduction in the ability of the sympathetic nervous system to distribute cardiac output after chronic HU. In conclusion, because 15 days of HU did not affect blood flow to the soleus during exercise, the increased dependence of the atrophied soleus on anerobic energy production during contractile activity cannot be explained by a reduced muscle blood flow.  相似文献   

19.
The increase in nuclear magnetic resonance transverse relaxation time (T(2)) of muscle water measured by magnetic resonance imaging after exercise has been correlated with work rate in human subjects. This study compared the T(2) increase in thigh muscles of trained (cycling VO(2 max) = 54.4 +/- 2.7 ml O(2). kg(-1). min(-1), mean +/- SE, n = 8, 4 female) vs. sedentary (31.7 +/- 0.9 ml O(2). kg(-1). min(-1), n = 8, 4 female) subjects after cycling exercise for 6 min at 50 and 90% of the subjects' individually determined VO(2 max). There was no significant difference between groups in the T(2) increase measured in quadriceps muscles within 3 min after the exercises, despite the fact that the absolute work rates were 60% higher in the trained group (253 +/- 15 vs. 159 +/- 21 W for the 90% exercise). In both groups, the increase in T(2) of vastus muscles was twofold greater after the 90% exercise than after the 50% exercise. The recovery of T(2) after the 90% exercise was significantly faster in vastus muscles of the trained compared with the sedentary group (mean recovery half-time 11.9 +/- 1.2 vs. 23.3 +/- 3.7 min). The results show that the increase in muscle T(2) varies with work rate relative to muscle maximum aerobic power, not with absolute work rate.  相似文献   

20.

Objectives

To establish arterial spin labelling (ASL) for quantitative renal perfusion measurements in a rat model at 3 Tesla and to test the diagnostic significance of ASL and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a model of acute kidney injury (AKI).

Material and Methods

ASL and DCE-MRI were consecutively employed on six Lewis rats, five of which had a unilateral ischaemic AKI. All measurements in this study were performed on a 3 Tesla MR scanner using a FAIR True-FISP approach and a TWIST sequence for ASL and DCE-MRI, respectively. Perfusion maps were calculated for both methods and the cortical perfusion of healthy and diseased kidneys was inter- and intramethodically compared using a region-of-interest based analysis.

Results/Significance

Both methods produce significantly different values for the healthy and the diseased kidneys (P<0.01). The mean difference was 147±47 ml/100 g/min and 141±46 ml/100 g/min for ASL and DCE-MRI, respectively. ASL measurements yielded a mean cortical perfusion of 416±124 ml/100 g/min for the healthy and 316±102 ml/100 g/min for the diseased kidneys. The DCE-MRI values were systematically higher and the mean cortical renal blood flow (RBF) was found to be 542±85 ml/100 g/min (healthy) and 407±119 ml/100 g/min (AKI).

Conclusion

Both methods are equally able to detect abnormal perfusion in diseased (AKI) kidneys. This shows that ASL is a capable alternative to DCE-MRI regarding the detection of abnormal renal blood flow. Regarding absolute perfusion values, nontrivial differences and variations remain when comparing the two methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号