首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although lysine (Lys) biosynthesis in plants is known to occur by way of a pathway that utilizes diaminopimelic acid (DAP) as a central intermediate, the available evidence suggests that none of the known DAP-pathway variants found in nature occur in plants. A new Lys biosynthesis pathway has been identified in Arabidopsis (Arabidopsis thaliana) that utilizes a novel transaminase that specifically catalyzes the interconversion of tetrahydrodipicolinate and LL-diaminopimelate, a reaction requiring three enzymes in the DAP-pathway variant found in Escherichia coli. The LL-DAP aminotransferase encoded by locus At4g33680 was able to complement the dapD and dapE mutants of E. coli. This result, in conjunction with the kinetic properties and substrate specificity of the enzyme, indicated that LL-DAP aminotransferase functions in the Lys biosynthetic direction under in vivo conditions. Orthologs of At4g33680 were identified in all the cyanobacterial species whose genomes have been sequenced. The Synechocystis sp. ortholog encoded by locus sll0480 showed the same functional properties as At4g33680. These results demonstrate that the Lys biosynthesis pathway in plants and cyanobacteria is distinct from the pathways that have so far been defined in microorganisms.  相似文献   

2.
Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.  相似文献   

3.
The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.  相似文献   

4.
Bacteroides fragilis and Clostridium thermocellum were recently found to synthesize diaminopimelate (DAP) by way of LL-DAP aminotransferase. Both species also contain an ortholog of meso-diaminopimelate dehydrogenase (Ddh), suggesting that they may have redundant pathways for DAP biosynthesis. The B. fragilis Ddh ortholog shows low homology with other examples of Ddh and this species belongs to a phylum, the Bacteriodetes, not previously known to contain this enzyme. By contrast, the C. thermocellum ortholog is well conserved with known examples of Ddh. Using in vitro and in vivo assays both the B. fragilis and C. thermocellum enzymes were found to be authentic examples of Ddh, displaying kinetic properties typical of this enzyme. The result indicates that B. fragilis contains a sequence diverged form of Ddh. Phylogenomic analysis of the microbial genome database revealed that 77% of species with a Ddh ortholog also contain a second pathway for DAP biosynthesis suggesting that Ddh evolved as an ancillary mechanism for DAP biosynthesis.  相似文献   

5.
In this study, we report the acquisition of the diaminopimelic acid (DAP) pathway of lysine biosynthesis in choanoflagellate Monosiga brevicollis and investigate how this pathway is incorporated and regulated in the established metabolic network. Our data show that all major genes related to the DAP pathway in Monosiga were acquired from bacteria and algae. Although an endogenous lysC exists in Monosiga, the newly acquired lysC is fused to lysA and used specifically for lysine biosynthesis. In addition, these acquired genes encode two key rate-limiting enzymes, thus conferring Monosiga a self-regulated unit with ability to generate lysine. Our data suggest that a newly acquired metabolic capability can be added to the recipient organism without disturbing the previously established metabolic network. This finding also implies that the biochemical system of the recipient organism may determine the type and function of genes to be acquired.  相似文献   

6.
Hybrid plasmids pLRS33 and pLRB4 containing Bac. subtilis genes coding lysin biosynthesis were subjected to genetical analysis. It is shown that after pLRS33- and pLRB4- transformation of E. coli strains, auxotrophic relative to lysin and diaminopimelic acid, there occurs complementation of dapA, dapB, dapC, dapD, dapE, lysA mutations by plasmid pLRS33 and of dapC, dapB, lysA mutations by plasmid pLRB4. The plasmids are studied for their influence on the level of lysin and its precurror synthesis in E. coli strains.  相似文献   

7.
Enzymes of triacylglycerol synthesis and their regulation   总被引:16,自引:0,他引:16  
Since the pathways of glycerolipid biosynthesis were elucidated in the 1950's, considerable knowledge has been gained about the enzymes that catalyze the lipid biosynthetic reactions and the factors that regulate triacylglycerol biosynthesis. In the last few decades, in part due to advances in technology and the wide availability of nucleotide and amino acid sequences, we have made enormous strides in our understanding of these enzymes at the molecular level. In many cases, sequence information obtained from lipid biosynthetic enzymes of prokaryotes and yeast has provided the means to search the genomic and expressed sequence tag databases for mammalian homologs and most of the genes have now been identified. Surprisingly, multiple isoforms appear to catalyze the same chemical reactions, suggesting that each isoform may play a distinct functional role in the pathway of triacylglycerol and phospholipid biosynthesis. This review focuses on the de novo biosynthesis of triacylglycerol in eukaryotic cells, the isoenzymes that are involved, their subcellular locations, how they are regulated, and their putative individual roles in glycerolipid biosynthesis.  相似文献   

8.
Carotenoids are widely distributed pigments in nature and their biosynthetic pathway has been extensively studied in various organisms. The recent access to the overwhelming amount genomic data of cyanobacteria has given birth to a novel approach called comparative genomics. The putative enzymes involved in the carotenoid biosynthesis among the cyanobacteria were determined by similarity-based tools. The reconstruction of biosynthetic pathway was based on the related enzymes. It is interesting to find that nearly all the cyanobacteria share quite similar pathway to synthesize beta-carotene except for Gloeobacter violaceus PCC 7421. The enzymes, crtE-B-P-Qb-L, involved in the upstream pathway are more conserved than the subsequent ones (crtW-R). In addition, many carotenoid synthesis enzymes exhibit diversity in structure and function. Such examples in the families of zeta -carotene desaturase, lycopene cylases and carotene ketolases were described in this article. When we mapped these crt genes to the cyanobacterial genomes, the crt genes showed great structural variation among species. All of them are dispersed on the whole chromosome in contrast to the linear adjacent distribution of the crt gene cluster in other eubacteria. Moreover, in unicellular cyanobacteria, each step of the carotenogenic pathway is usually catalyzed by one gene product, whereas multiple ketolase genes are found in filamentous cyanobacteria. Such increased numbers of crt genes and their correlation to the ecological adaptation were carefully discussed.  相似文献   

9.
The functional complementation of two Escherichia coli strains defective in the succinylase pathway of meso-diaminopimelate (meso-DAP) biosynthesis with a Bordetella pertussis gene library resulted in the isolation of a putative dap operon containing three open reading frames (ORFs). In line with the successful complementation of the E. coli dapD and dapE mutants, the deduced amino acid sequences of two ORFs revealed significant sequence similarities with the DapD and DapE proteins of E. coli and many other bacteria which exhibit tetrahydrodipicolinate succinylase and N-succinyl-L,L-DAP desuccinylase activity, respectively. The first ORF within the operon showed significant sequence similarities with transaminases and contains the characteristic pyridoxal-5'-phosphate binding motif. Enzymatic studies revealed that this ORF encodes a protein with N-succinyl-L,L-DAP aminotransferase activity converting N-succinyl-2-amino-6-ketopimelate, the product of the succinylase DapD, to N-succinyl-L,L-DAP, the substrate of the desuccinylase DapE. Therefore, this gene appears to encode the DapC protein of B. pertussis. Apart from the pyridoxal-5'-phosphate binding motif, the DapC protein does not show further amino acid sequence similarities with the only other known enzyme with N-succinyl-L,L-DAP aminotransferase activity, ArgD of E. coli.  相似文献   

10.
Cytochromes P450 in gibberellin biosynthesis   总被引:2,自引:0,他引:2  
The gibberellins (GAs) are an important class of plant growth regulators that are active in many aspects of plant growth and development. GAs are synthesized by a complex pathway involving three enzyme classes spanning different subcellular compartments. One of these enzyme classes is the cytochrome P450s which catalyze a number of oxidation steps in the middle part of the pathway. Mutants in these cytochrome P450-mediated steps in a number of species have been crucial in isolating the genes encoding these enzymes and have also played an important role in understanding GA physiology. GAs are also synthesized by fungi, in a biosynthesis pathway largely catalyzed by cytochrome P450s. The fungal pathway appears to have evolved independently to that of higher plants.
  相似文献   

11.
The pathway of lysine biosynthesis in the methanococci has not been identified previously. A variant of the diaminopimelic acid (DAP) pathway uses diaminopimelate aminotransferase (DapL) to catalyze the direct conversion of tetrahydrodipicolinate (THDPA) to ll-DAP. Recently, the enzyme DapL (MTH52) was identified in Methanothermobacter thermautotrophicus and shown to belong to the DapL1 group. Although the Methanococcus maripaludis genome lacks a gene that can be unambiguously assigned a DapL function based on sequence similarity, the open reading frame MMP1527 product shares 30% amino acid sequence identity with MTH52. A Δmmp1527 deletion mutant was constructed and found to be a lysine auxotroph, suggesting that this DapL homolog in methanococci is required for lysine biosynthesis. In cell extracts of the M. maripaludis wild-type strain, the specific activity of DapL using ll-DAP and α-ketoglutarate as substrates was 24.3 ± 2.0 nmol min−1 mg of protein−1. The gene encoding the DapL homolog in Methanocaldococcus jannaschii (MJ1391) was cloned and expressed in Escherichia coli, and the protein was purified. The maximum activity of MJ1391 was observed at 70°C and pH 8.0 to 9.0. The apparent Kms of MJ1391 for ll-DAP and α-ketoglutarate were 82.8 ± 10 μM and 0.42 ± 0.02 mM, respectively. MJ1391 was not able to use succinyl-DAP or acetyl-DAP as a substrate. Phylogenetic analyses suggested that two lateral gene transfers occurred in the DapL genes, one from the archaea to the bacteria in the DapL2 group and one from the bacteria to the archaea in the DapL1 group. These results demonstrated that the DapL pathway is present in marine methanogens belonging to the Methanococcales.Two lysine biosynthesis pathways evolved separately in organisms, the diaminopimelic acid (DAP) and aminoadipic acid (AAA) pathways. The DAP pathway synthesizes l-lysine from aspartate and pyruvate, and diaminopimelic acid is an intermediate. This pathway is utilized by most bacteria, some archaea, some fungi, some algae, and plants (28, 29). The AAA pathway synthesizes l-lysine from α-ketoglutarate and acetyl coenzyme A (acetyl-CoA), and α-aminoadipic acid is an intermediate. This pathway is utilized by most fungi, some algae, the bacterium Thermus thermophilus, and probably some archaea, such as Sulfolobus, Thermoproteus, and Pyrococcus (27, 36). No organism is known to possess both pathways.There are four known variations of the DAP pathway in bacteria: the succinylase, acetylase, aminotransferase, and dehydrogenase pathways (Fig. (Fig.1).1). These pathways share the steps converting l-aspartate to l-2,3,4,5-tetrahydrodipicolinate (THDPA), but the subsequent steps leading to the production of meso-diaminopimelate, the immediate precursor of l-lysine, are different. The succinylase pathway acylates THDPA with succinyl-CoA to generate N-succinyl-ll-2-amino-6-ketopimelate and forms meso-DAP by subsequent transamination, desuccinylation, and epimerization. This pathway is utilized by proteobacteria and many firmicutes and actinobacteria (12, 14, 20, 29). The acetylase pathway is analogous to the succinylase pathway but uses N-acetyl intermediates. This pathway is limited to certain Bacillus species, in which the corresponding genes have not been identified (33, 39). The aminotransferase pathway converts THDPA directly to ll-DAP by diaminopimelate aminotransferase (DapL) without acylation. This pathway is shared by cyanobacteria (19), chlamydia (24), the archaeon Methanothermobacter thermautotrophicus (15, 18), and the plant Arabidopsis thaliana (19). The dehydrogenase pathway forms meso-DAP directly from THDPA, NADPH, and NH4+ by using diaminopimelate dehydrogenase (Ddh). This pathway is utilized by some Bacillus and Brevibacterium species and Corynebacterium glutamicum (25, 26, 40). Most bacteria use only one of the four variants, although certain bacteria, such as C. glutamicum and Bacillus macerans, possess both the succinylase and dehydrogenase pathways (3, 30).Open in a separate windowFIG. 1.Variations in the DAP pathway for lysine biosynthesis. 1, succinylase pathway; 2, acetylase pathway; 3, aminotransferase pathway; 4, dehydrogenase pathway. Abbreviations and designations: THDPA, l-2,3,4,5-tetrahydrodipicolinate; l,l-DAP, ll-2,6-diaminopimelate; meso-DAP, meso-2,6-diaminopimelate; LysC, aspartate kinase; Asd, aspartate semialdehyde dehydrogenase; DapA, dihydrodipicolinate synthase; DapB, dihydrodipicolinate reductase; DapD, THDPA succinylase; DapC, succinyl-DAP aminotransferase; DapE, succinyl-DAP desuccinylase; DapF, DAP epimerase; LysA, DAP decarboxylase; DapL, ll-DAP aminotransferase; Ddh, DAP dehydrogenase.The diaminopimelate aminotransferase (DapL) catalyzes the transfer of an amino group from l-glutamate to THDPA, forming ll-DAP (19, 24). It uses pyridoxal 5′-phosphate (PLP) as a coenzyme and has constrained substrate specificity. DapL is not closely related to the DapC/ArgD aminotransferase, which functions in the succinylase pathway. Comparative genomic analysis identified dapL homologs in both bacterial and archaeal genomes. Homologs of dapD and dapE have not been found in genomes with dapL homologs, suggesting that transamination of THDPA does not require succinylation in these organisms (18). Phylogenetic analysis also suggested classification of DapL into two groups, DapL1 and DapL2, which share ∼30% amino acid sequence identity (18). These two groups both exhibit DapL activity, and they cannot be differentiated by kinetic properties (18, 37). The distribution of the two groups is not obviously associated with specific prokaryotic lineages (18).Methanogens are strictly anaerobic archaea that obtain all or most of their energy for growth from the production of large quantities of methane. All methanogens belong to the Euryarchaeota and are currently classified in six orders: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, Methanopyrales, and Methanocellales (23, 41, 42). Biochemical studies of Methanocaldococcus jannaschii and Methanococcus voltae belonging to Methanococcales, Methanospirillum hungatei belonging to Methanomicrobiales, and Methanothermobacter thermautotrophicus belonging to Methanobacteriales suggested that these organisms derive their l-lysine from a DAP pathway, but the studies did not discriminate among the four DAP pathway variations (2, 9, 10, 32). Genome sequence analysis also suggested a DAP pathway in Methanosarcina mazei belonging to Methanosarcinales (8). Recent studies identified a dapL homolog belonging to the DapL1 group in M. thermautotrophicus. The gene product complemented an Escherichia coli dapD dapE double mutant and catalyzed the transamination of DAP to THDPA, suggesting that Methanobacteriales use the DapL pathway for l-lysine biosynthesis (15, 18). Homologs of asd, dapA, dapB, dapF, and lysA have been identified in the genomes of M. maripaludis and M. jannaschii belonging to the Methanococcales, but homologs responsible for the conversion of THDPA to ll-DAP have not been annotated (4, 17). Here we identified methanococcal DapL homologs and demonstrated that the DapL pathway is present in Methanococcales.  相似文献   

12.
Dobson RC  Girón I  Hudson AO 《PloS one》2011,6(5):e20439
In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to L,L-diaminopimelate (L,L-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.  相似文献   

13.
紫杉醇生物合成途径中相关酶的研究进展   总被引:4,自引:0,他引:4  
抗癌新药紫杉醇是具有萜类环状结构的一种重要次生代谢产物 ,研究紫杉醇的生物合成对于通过基因工程手段提高紫杉醇的产量 ,解决目前资源紧缺造成的巨大供求矛盾具有重要意义 ,这就需要对紫杉醇生物合成途径中催化各步反应 (尤其是关键步骤 )的酶以及编码这些酶的基因有个全面的了解。对近年来紫杉醇生物合成途径中相关酶的研究进行了综述 ,大部分酶及相关基因已被分离、克隆 ,但还有一些酶及相关基因没有发现 ,有待继续深入研究。  相似文献   

14.
We investigated the expression dynamics of genes involved in lysine biosynthesis in Escherichia coli cells to obtain a quantitative understanding of the gene regulatory system. By constructing reporter strains expressing the green fluorescence protein (gfp) gene under the control of the promoter regions of those genes associated with lysine biosynthesis, time-dependent changes in gene expression in response to changes in lysine concentration in the medium were monitored by flow cytometry. Five promoters involved in lysine biosynthesis respond to the changes in lysine concentration in the medium. For these five promoters, time-dependent gene expression data were fitted to a simple dynamical model of gene expression to estimate the parameters of the gene regulatory system. According to the fitting parameters, dapD shows a significantly larger coefficient of repression than the other genes in the lysine synthesis pathway, which indicates the weak binding activity of the repressor to the dapD promoter region. Moreover, there is a trend that the closer an enzyme is to the start of the lysine biosynthesis pathway, the smaller its maximal promoter activity is. The results provide a better quantitative understanding of the expression dynamics in the lysine biosynthesis pathway.  相似文献   

15.
Phadwal K 《Gene》2005,345(1):35-43
Phylogenetic analysis of carotenoid biosynthetic pathway genes and their evolutionary rate variations were studied among eubacterial taxa. The gene sequences for the enzymes involved in this pathway were obtained for major phylogenetic groups of eubacteria (green sulfur bacteria, green nonsulphur bacteria, Gram-positive bacteria, proteobacteria, flavobacteria, cyanobacteria) and archeabacteria. These gene datasets were distributed under five major steps of carotenoid biosynthesis in eubacteria; isoprenoid precursor biosynthesis, phytoene synthesis, dehydrogenation of phytoene, lycopene cyclization, formation of acyclic xanthophylls, formation of cyclic xanthophylls and carotenoid biosynthesis regulation. The NJ algorithm was used on protein coding DNA sequences to deduce the evolutionary relationship for the respective crt genes among different eubacterial lineages. The rate of nonsynonymous nucleotide substitutions per nonsynonymous site (d(N)) and synonymous nucleotide substitutions per synonymous site (d(S)) were calculated for different clades of the respective phylogenetic tree for specific crt genes. The phylogenetic analysis suggests that evolutionary pattern of crt genes in eubacteria is characterized by lateral gene transfer and gene duplication events. The d(N) values indicate that carotenoid biosynthetic genes are more conserved in proteobacteria than in any other eubacterial phyla. Furthermore, of the genes involved in carotenoid biosynthesis pathway, structural genes evolve slowly than the regulatory genes in eubacteria.  相似文献   

16.
Recently a dapF mutant of Escherichia coli lacking the diaminopimelate epimerase was found to have an unusual large LL-diaminopimelic acid (LL-DAP) pool as compared with that of meso-DAP (C. Richaud, W. Higgins, D. Mengin-Lecreulx, and P. Stragier, J. Bacteriol. 169:1454-1459, 1987). In this report, the consequences of high cellular LL-DAP/meso-DAP ratios on the structure and metabolism of peptidoglycan were investigated. For this purpose new efficient high-pressure liquid chromatography techniques for the separation of the DAP isomers were developed. Sacculi from dapF mutants contained a high proportion of LL-DAP that varied greatly with growth conditions. The same was observed with the two DAP-containing precursors, UDP-N-acetylmuramyl-tripeptide and UDP-N-acetylmuramyl-pentapeptide. The limiting steps for the incorporation of LL-DAP into peptidoglycan were found to be its addition to UDP-N-acetylmuramyl-L-alanyl-D-glutamate and the formation of the D-alanyl-DAP cross-bridges. The Km value of the DAP-adding enzyme for LL-DAP was 3.6 x 10(-2) M as compared with 1.1 x 10(-5) M for meso-DAP. When isolated sacculi were treated with Chalaropsis N-acetylmuramidase and the resulting soluble products were analyzed by high-pressure liquid chromatography, the proportion of the main peptidoglycan dimer was lower in the dapF mutant than in the parental strain. Moreover, the proportion of LL-DAP was higher in the main monomer than in the main dimer, where it was almost exclusively located in the donor unit. There are thus very few D-alanyl-LL-DAP cross-bridges, if any. We also observed that large amounts of LL-DAP and N-succinyl-LL-DAP were excreted in the growth medium by the dapF mutant.  相似文献   

17.
18.
l,l-Diaminopimelate aminotransferase (DapL) is an enzyme required for the biosynthesis of meso-diaminopimelate (m-DAP) and l-lysine (Lys) in some bacteria and photosynthetic organisms. m-DAP and Lys are both involved in the synthesis of peptidoglycan (PG) and protein synthesis. DapL is found in specific eubacterial and archaeal lineages, in particular in several groups of pathogenic bacteria such as Leptospira interrogans (LiDapL), the soil/water bacterium Verrucomicrobium spinosum (VsDapL) and the alga Chlamydomonas reinhardtii (CrDapL). Here we present the first comprehensive inhibition study comparing the kinetic activity of DapL orthologs using previously active small molecule inhibitors formerly identified in a screen with the DapL of Arabidopsis thaliana (AtDapL), a flowering plant. Each inhibitor is derived from one of four classes with different central structural moieties: a hydrazide, a rhodanine, a barbiturate, or a thiobarbituate functionality. The results show that all five compounds tested were effective at inhibiting the DapL orthologs. LiDapL and AtDapL showed similar patterns of inhibition across the inhibitor series, whereas the VsDapL and CrDapL inhibition patterns were different from that of LiDapL and AtDapL. CrDapL was found to be insensitive to the hydrazide (IC50 >200 μM). VsDapL was found to be the most sensitive to the barbiturate and thiobarbiturate containing inhibitors (IC50 ∼5 μM). Taken together, the data shows that the homologs have differing sensitivities to the inhibitors with IC50 values ranging from 4.7 to 250 μM. In an attempt to understand the basis for these differences the four enzymes were modeled based on the known structure of AtDapL. Overall, it was found that the enzyme active sites were conserved, although the second shell of residues close to the active site were not. We conclude from this that the altered binding patterns seen in the inhibition studies may be a consequence of the inhibitors forming additional interactions with residues proximal to the active site, or that the inhibitors may not act by binding to the active site. Compounds that are specific for DapL could be potential biocides (antibiotic, herbicide or algaecide) that are nontoxic to animals since animals do not contain the enzymes necessary for PG or Lys synthesis. This study provides important information to expand our current understanding of the structure/activity relationship of DapL and putative inhibitors that are potentially useful for the design and or discovery of novel biocides.  相似文献   

19.
Abstract The 4‐coumarate:coenzyme A ligase (4CL) is the branch point enzyme that channels the general phenylpropanoid metabolism into specific lignin and flavonoid biosynthesis branches. Genetic engineering experiments on the 4CL gene have been carried out in many species, but the precise functions of different gene members are still unresolved. To investigate the evolutionary relationships and functional differentiation of the 4CL gene family, we made a comprehensive evolutionary analysis of this gene family from 27 species representing the major lineages of land plants. The phylogenetic analysis indicates that both vascular and seed plant 4CL genes form monophyletic groups, and that three and two 4CL classes can be recognized in gymnosperms and angiosperms, respectively. The evolutionary rate and frequency of duplication of the 4CL gene family are much more conserved than that of the CAD/SAD (cinnamyl/sinapyl alcohol dehydrogenase) gene family, which catalyzes the last step in monolignol biosynthesis. This may be due to different selective pressures on these genes whose products catalyze different steps in the biosynthesis pathway. In addition, we found two new major classes of 4CL genes in gymnosperms.  相似文献   

20.
The peptidoglycans from several Gram-negative and Gram-positive periodontal pathogens were isolated, purified, and characterized both morphologically and chemically. In addition, the effects of the mureolytic enzymes, lysozyme, M-1 N-acetyl-muramidase, and the AM-3 endopeptidase, on the peptidoglycans were examined. These enzymes were found to be highly effective in the degradation of the purified peptidoglycans; however, a Bacteroides capillus peptidoglycan-protein complex exhibited a greater resistance to these enzymes. Morphologically, the peptidoglycans consisted of large saccular sheets which, when viewed by scanning electron microscopy, contained numerous holes and tears. Chemically, the peptidoglycans consisted of muramic acid, glucosamine, alanine, glutamic acid, and meso-diaminopimelic acid (DAP). One Bacteroides species, Bacteroides gingivalis strain W, contained glycine and LL-DAP, suggestive of an indirectly cross-linked A3 gamma peptidoglycan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号