首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
G Yang  M S Rose  B G Turgeon    O C Yoder 《The Plant cell》1996,8(11):2139-2150
Race T of the fungal pathogen Cochliobolus heterostrophus is highly virulent toward Texas male sterile (T) maize and differs from its relative, race O, at a locus (Tox1) that is responsible for the production of T-toxin, a family of linear long-chain (C35 to E41) polyketides. In a previous study, the restriction enzyme-mediated integration procedure was used to mutagenize and tag Tox1. Here, we report that the DNA recovered from the insertion site of one mutant encodes a 7.6-kb open reading frame (2530 amino acids) that identifies a multifunctional polyketide synthase (PKS)-encoding gene (PKS1) with six catalytic domains arranged in the following order, starting at the N terminus: beta-ketoacyl synthase, acyltransferase, dehydratase, enoyl reductase, beta-ketoacyl reductase, and acyl carrier protein. PKS1 is interrupted by four apparent introns (74, 57, 49, and 41 bp) and exists in the genome as a single copy surrounded by highly repetitive, A + T-rich DNA. When PKS1 in race T was inactivated by targeted gene disruption, T-toxin production and high virulence were eliminated, indicating that this PKS is required for fungal virulence. Race O strains, which do not produce T-toxin, lack a detectable homolog of PKS1, suggesting that race T may have acquired PKS1 by horizontal transfer of DNA rather than by vertical inheritance from an ancestral strain.  相似文献   

4.
5.
6.
7.
Notes on an albino mutant of Alternaria brassicicola   总被引:1,自引:0,他引:1  
R Campbell  R W Larner  M F Madelin 《Mycologia》1968,60(5):1122-1125
  相似文献   

8.
Alternaria brassicicola is a fungal pathogen of many agriculturally important cruciferous crops. Cyclobrassinin hydrolase (CH) is an enzyme produced by A. brassicicola that catalyzes the transformation of the cruciferous phytoalexin cyclobrassinin into S-methyl[(2-sulfanyl-1H-indolyl-3)methyl]carbamothioate. The purification and characterization of CH was performed using a four-step chromatography method. SDS–PAGE and gel exclusion chromatography indicated that CH is a tetrameric protein with molecular mass of 330 kDa. Sequence analysis and chemical modification of CH with selective reagents suggested that the enzyme mediates hydrolysis of cyclobrassinin using a catalytic amino acid triad. Enzyme kinetic studies using cyclobrassinin and 1-methylcyclobrassinin as substrates revealed that CH displayed positive substrate cooperativity. Investigation of the effect of nine phytoalexins and two derivatives on the activity of CH indicated that six compounds displayed inhibitory activity: brassilexin, 1-methylbrassilexin, dioxibrassinin, camalexin, brassicanal A and sinalexin. The enzyme kinetics of CH strongly suggested that brassilexin and 1-methylbrassilexin are noncompetitive inhibitors of CH activity, and that camalexin is a competitive inhibitor while dioxibrassinin inhibits CH through a mixed mechanism. The phytoalexin brassilexin is the most effective inhibitor of CH (Ki = 32 ± 9 μM). These results suggest that crops able to accumulate higher concentration of brassilexin would display higher resistance levels to the fungus.  相似文献   

9.
Reliable methods for disease severity assessment are of crucial importance in the study of plant pathogen interactions, either for disease diagnostic on the field or to assess phenotypical differences in plants or pathogen strains. Currently, most of the assays used in fungal disease diagnostic rely on visual assessment of the symptoms, lesion diameter measurement or spore counting. However, these tests are tedious and often cannot discriminate between slightly different levels of resistance. Besides, they are not well suited to assess fungal development in the early phases of the infection, before macroscopical symptoms are visible or before sporulation. We describe here a pathogenicity assay based on the relative quantification of fungal and plant DNA in infected Arabidopsis thaliana leaves by means of real-time quantitative PCR. We show that it allows to monitor quantitatively the growth of the fungi Alternaria brassicicola and Botrytis cinerea in a sensitive and reliable way. Although highly sensitive, this test also exhibits a high robustness, which is crucial to significantly discriminate between lines displaying slightly different levels of resistance. Therefore, it allows to assess fungal development from the very first stages of infection and provides a fast and very practical alternative to currently described assays for phenotyping either plant mutant lines or fungal strains.  相似文献   

10.
Summary The freeze-etching technique, aldehyde fixation and heavy metal shadowing of wall material were used in an electron microscope study of the maturing spores of Alternaria brassicicola (Schw.) Wiltshire. The walls are composed of fibres, probably of chitin. The plasmalemma has rectangular grooves in its outer surface and corresponding ridges on the inner one; both surfaces bear particles of two distinct sizes. Endoplasmic reticulum may be lamellated or vesicular and its involvement in wall formation is confirmed; vesicles produced by the endoplasmic reticulum fuse with the plasmalemma. The structure of nuclei, mitochondria and vacuoles is also demonstrated.  相似文献   

11.
12.
13.
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.  相似文献   

14.
Mannitol has been hypothesized to play a role in antioxidant defense. In previous work, we confirmed the presence of the two mannitol biosynthetic enzymes, mannitol dehydrogenase (MtDH) and mannitol 1-phosphate 5-dehydrogenase (MPDH), in the fungus Alternaria alternata and created disruption mutants for both enzymes. These mutants were used to investigate the role of mannitol in pathogenicity of A. alternata on its host, tobacco. Conidia of all mutants were viable and germinated normally. GC-MS analysis demonstrated elevated levels of trehalose in the mutants, suggesting that trehalose may substitute for mannitol as a storage compound for germination. Tobacco inoculation showed no reduction in lesion severity caused by the MtDH mutant as compared with wild type; however, the MPDH mutant and a mutant in both enzymes caused significantly less disease. Microscopy analysis indicated that the double mutant was unaffected in the ability to germinate and produce appressoria on tobacco leaves and elicited a defense response from the host, indicating that it was able to penetrate and infect the host. We conclude that mannitol biosynthesis is required for pathogenesis of A. alternata on tobacco, but is not required for spore germination either in vitro or in planta or for initial infection.  相似文献   

15.
The effect of iprodione on the seed-borne phase of Alternaria brassicicola   总被引:2,自引:0,他引:2  
Alternaria brassicicola infection of Brassica oleracea seeds was effectively controlled by a dust application of iprodione (Rovral 50% w.P.). At 2.5 g a.i./kg the seed-borne fungus was usually eliminated from samples with up to 61.5% affected seeds (35.5% internally diseased) but higher levels of infection required increased doses for complete eradication of the fungus. The germination of healthy seeds, including samples from 7–yr-old stocks, on filter paper was unaffected by the treatment. However, the germination of diseased samples, particularly those internally infected with A. brassicicola, was improved. More seedlings emerged from iprodione treated than from untreated seeds in glasshouse soil but the differences were not significant. The application of gamma-hexachlorocyclohexane to iprodione treated seeds sown in soil did not adversely affect subsequent emergence or disease control. Disease control was maintained and germination was not affected by the treatment when treated infected seeds were stored for 2 yr at 10 °C, 50% r.h. In a field trial iprodione seed treatment reduced seedling infection in a cabbage crop grown from naturally diseased seeds (100% contaminated, 45.5% internally infected) from 5.6 to 0.04%.  相似文献   

16.
Recent reports have indicated that cholesterol plays a crucial role during the uptake of mycobacteria by macrophages. However, the significance of cholesterol modification enzymes encoded by Mycobacterium tuberculosis for bacterial pathogenicity remains unknown. Here, the authors explored whether the well-known cholesterol modification enzyme, cholesterol oxidase (ChoD), is important for virulence of the tubercle bacillus. Homologous recombination was used to replace the choD gene from the M. tuberculosis genome with a nonfunctional copy. The resultant mutant (delta choD) was attenuated in peritoneal macrophages. No attenuation in macrophages was observed when the same strain was complemented with an intact choD gene controlled by a heat shock promoter (delta choDP(hsp)choD). The mice infection experiments confirm the significance of ChoD in the pathogenesis of M. tuberculosis.  相似文献   

17.
Calcineurin is required for virulence of Cryptococcus neoformans.   总被引:13,自引:0,他引:13       下载免费PDF全文
A Odom  S Muir  E Lim  D L Toffaletti  J Perfect    J Heitman 《The EMBO journal》1997,16(10):2576-2589
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.  相似文献   

18.
Lipoproteins are a subgroup of secreted bacterial proteins characterized by a lipidated N-terminus, processing of which is mediated by the consecutive activity of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (LspA). The study of LspA function has been limited mainly to non-pathogenic microorganisms. To study a potential role for LspA in the pathogenesis of bacterial infections, we have disrupted lspA by allelic replacement in Mycobacterium tuberculosis, one of the world's most devastating pathogens. Despite the presence of an impermeable lipid outer layer, it was found that LspA was dispensable for growth under in vitro culture conditions. In contrast, the mutant was markedly attenuated in virulence models of tuberculosis. Our findings establish lipoprotein metabolism as a major virulence determinant of tuberculosis and define a role for lipoprotein processing in bacterial pathogenesis. In addition, these results hint at a promising new target for therapeutic intervention, as a highly specific inhibitor of bacterial lipoprotein signal peptidases is available.  相似文献   

19.
PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
The role and function of PE_PGRS proteins of Mycobacterium tuberculosis (Mtb) remains elusive. In this study for the first time, Mtb isogenic mutants missing selected PE_PGRSs were used to investigate their role in the pathogenesis of tuberculosis (TB). We demonstrate that the MtbΔPE_PGRS30 mutant was impaired in its ability to colonize lung tissue and to cause tissue damage, specifically during the chronic steps of infection. Inactivation of PE_PGRS30 resulted in an attenuated phenotype in murine and human macrophages due to the inability of the Mtb mutant to inhibit phagosome–lysosome fusion. Using a series of functional deletion mutants of PE_PGRS30 to complement MtbΔPE_PGRS30, we show that the unique C‐terminal domain of the protein is not required for the full virulence. Interestingly, when Mycobacterium smegmatis recombinant strain expressing PE_PGRS30 was used to infect macrophages or mice in vivo, we observed enhanced cytotoxicity and cell death, and this effect was dependent upon the PGRS domain of the protein.Taken together these results indicate that PE_PGRS30 is necessary for the full virulence of Mtb and sufficient to induce cell death in host cells by the otherwise non‐pathogenic species M. smegmatis, clearly demonstrating that PE_PGRS30 is an Mtb virulence factor.  相似文献   

20.
Alternaria brassicae and A. brassicicola lesions present on infected leaves of oilseed rape and cabbage placed outdoors on soil produced viable spores for as long as leaf tissues remained intact. For oilseed rape this was up to 8 wk and for cabbage up to 12 wk. On leaves exposed in November and January spore concentrations decreased with time but on leaves exposed between April and June spore concentrations increased up to 9-fold in the first 4–6 wk and then declined. On stem sections of seed plants of oilseed rape and cabbage similarly placed on the soil, the fungi produced viable spores for up to 23 wk with spore concentrations increasing up to 11-fold in the first 6–8 wk after harvest. These results indicate that infected debris of brassica crops remaining on the ground after harvest may provide a source of dark leaf spot infection which may be implicated in the spread of the disease within and between crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号